基于蒙特卡罗方法构建机器人全工作空间

蒙特卡罗方法简介

蒙特卡罗方法(Monte Carlo Method)是一种通过随机采样来解决数学问题的数值计算方法。它广泛应用于各种领域,包括物理学、金融、工程和计算机科学。在机械臂的运动学和控制中,蒙特卡罗方法可以用于路径规划、逆运动学求解、碰撞检测等问题。

制作流程

  • 定义机械臂模型:确定机械臂的关节数、关节类型(旋转或平移)、关节角度范围等参数。
  • 随机采样关节配置:在关节角度范围内随机生成大量的关节配置。
  • 正向运动学计算:对于每个随机生成的关节配置,计算末端执行器的位置和姿态。
  • 记录可达位置:将所有计算得到的末端执行器位置记录下来,形成机械臂的可达空间个的估计。
  • 可视化可达空间:将记录的可达位置进行可视化,展示机械臂的工作范围。

制作案例

案例代码

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

# 定义机器人的参数
L1 = 1.0  # 第一个连杆的长度
L2 = 1.0  # 第二个连杆的长度
num_samples = 10000  # 随机采样的数量

def forward_kinematics(theta1, theta2):
    """
    计算正向运动学,得到末端执行器的位置
    :param theta1: 第一个关节的角度
    :param theta2: 第二个关节的角度
    :return: 末端执行器的位置 (x, y)
    """
    x = L1 * np.cos(theta1) + L2 * np.cos(theta1 + theta2)
    y = L1 * np.sin(theta1) + L2 * np.sin(theta1 + theta2)
    return x, y

# 随机采样关节配置
theta1_samples = np.random.uniform(0, 2*np.pi, num_samples)
theta2_samples = np.random.uniform(0, 2*np.pi, num_samples)

# 计算末端执行器的位置
positions = np.array([forward_kinematics(t1, t2) for t1, t2 in zip(theta1_samples, theta2_samples)])

# 绘制可达空间
plt.figure(figsize=(8, 8))
plt.plot(positions[:, 0], positions[:, 1], 'b.', markersize=1)
plt.title('Monte Carlo Simulation of Robot Workspace')
plt.xlabel('X')
plt.ylabel('Y')
plt.axis('equal')
plt.grid(True)
plt.show()
相关推荐
鲁邦通物联网11 小时前
开发者实践:机器人梯控的 API 对接、边缘调度与 MQTT 解耦
机器人·服务机器人·机器人梯控·agv梯控·非侵入式采集
江湖独行侠11 小时前
每日一篇-【ICRA2025】-->任务感知语义地图:超越指令的自主机器人任务分配
机器人
星辰pid12 小时前
基于ROS与YOLOv3的智能采购机器人设计(智能车创意组-讯飞智慧生活组)
人工智能·opencv·yolo·机器人
向阳逐梦13 小时前
一篇图文详解PID调参细节,实现PID入门到精通
人工智能·机器人
Mr.Winter`17 小时前
自动驾驶运动规划 | 基于自行车模型的运动学模型和横向动力学模型详细推导图解
人工智能·机器人·自动驾驶·ros
灵途科技1 天前
灵途科技亮相NEPCON ASIA 2025 以光电感知点亮具身智能未来
人工智能·科技·机器人
ZPC82101 天前
opencv 获取图像中物体的坐标值
人工智能·python·算法·机器人
格林威1 天前
AOI在人形机器人制造领域的应用
人工智能·数码相机·算法·目标跟踪·机器人·视觉检测·制造
JIngJaneIL2 天前
机器人信息|基于Springboot的机器人门户展示系统设计与实现(源码+数据库+文档)
java·数据库·spring boot·机器人·论文·毕设·机器人门户展示系统
PNP Robotics2 天前
PNP机器人将要亮相2025 ROS中国区大会|发表演讲、共探具身智能新未来
机器人