基于蒙特卡罗方法构建机器人全工作空间

蒙特卡罗方法简介

蒙特卡罗方法(Monte Carlo Method)是一种通过随机采样来解决数学问题的数值计算方法。它广泛应用于各种领域,包括物理学、金融、工程和计算机科学。在机械臂的运动学和控制中,蒙特卡罗方法可以用于路径规划、逆运动学求解、碰撞检测等问题。

制作流程

  • 定义机械臂模型:确定机械臂的关节数、关节类型(旋转或平移)、关节角度范围等参数。
  • 随机采样关节配置:在关节角度范围内随机生成大量的关节配置。
  • 正向运动学计算:对于每个随机生成的关节配置,计算末端执行器的位置和姿态。
  • 记录可达位置:将所有计算得到的末端执行器位置记录下来,形成机械臂的可达空间个的估计。
  • 可视化可达空间:将记录的可达位置进行可视化,展示机械臂的工作范围。

制作案例

案例代码

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

# 定义机器人的参数
L1 = 1.0  # 第一个连杆的长度
L2 = 1.0  # 第二个连杆的长度
num_samples = 10000  # 随机采样的数量

def forward_kinematics(theta1, theta2):
    """
    计算正向运动学,得到末端执行器的位置
    :param theta1: 第一个关节的角度
    :param theta2: 第二个关节的角度
    :return: 末端执行器的位置 (x, y)
    """
    x = L1 * np.cos(theta1) + L2 * np.cos(theta1 + theta2)
    y = L1 * np.sin(theta1) + L2 * np.sin(theta1 + theta2)
    return x, y

# 随机采样关节配置
theta1_samples = np.random.uniform(0, 2*np.pi, num_samples)
theta2_samples = np.random.uniform(0, 2*np.pi, num_samples)

# 计算末端执行器的位置
positions = np.array([forward_kinematics(t1, t2) for t1, t2 in zip(theta1_samples, theta2_samples)])

# 绘制可达空间
plt.figure(figsize=(8, 8))
plt.plot(positions[:, 0], positions[:, 1], 'b.', markersize=1)
plt.title('Monte Carlo Simulation of Robot Workspace')
plt.xlabel('X')
plt.ylabel('Y')
plt.axis('equal')
plt.grid(True)
plt.show()
相关推荐
weixin_446260853 小时前
Isaac Lab:让机器人学习更简单的开源框架
学习·机器人
Mr.Winter`12 小时前
轨迹优化 | 基于激光雷达的欧氏距离场ESDF地图构建(附ROS C++仿真)
c++·人工智能·机器人·自动驾驶·ros·ros2·具身智能
Blossom.1181 天前
机器学习在智能制造业中的应用:质量检测与设备故障预测
人工智能·深度学习·神经网络·机器学习·机器人·tensorflow·sklearn
MidJourney中文版1 天前
深度报告:中老年AI陪伴机器人需求分析
人工智能·机器人
沫儿笙2 天前
ABB焊接机器人智能节气仪
人工智能·机器人
微小冷2 天前
二关节机器人系统模型推导
线性代数·机器人·概率论·推导·拉格朗日函数·二关节机器人·机器人控制系统的设计
kyle~2 天前
计算机视觉---RealSense深度相机技术
人工智能·数码相机·计算机视觉·机器人·嵌入式·ros·传感器
视觉语言导航2 天前
RAL-2025 | 清华大学数字孪生驱动的机器人视觉导航!VR-Robo:面向视觉机器人导航与运动的现实-模拟-现实框架
人工智能·深度学习·机器人·具身智能
BFT白芙堂2 天前
睿尔曼系列机器人——以创新驱动未来,重塑智能协作新生态(上)
人工智能·机器学习·机器人·协作机器人·复合机器人·睿尔曼机器人
Blossom.1183 天前
机器学习在智能建筑中的应用:能源管理与环境优化
人工智能·python·深度学习·神经网络·机器学习·机器人·sklearn