大语言模型:Linux系统下源码编译Ollama指南

为了进一步学习Ollama底层机制,方便代码分析、问题调试,本文将简单介绍在Linux环境下源码编译Ollama的全流程,整个编译过程在没有GPU的设备上运行,只编译纯CPU的Ollama版本。

必备工具

编译Ollama需要一些基础的开发工具和依赖库

js 复制代码
$ go version
go version go1.23.4 linux/amd64
$ git --version
git version 2.25.1
$ make --version
GNU Make 4.2.1
Built for x86_64-pc-linux-gnu
Copyright (C) 1988-2016 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
$ gcc --version
gcc (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Copyright (C) 2019 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.  There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

编译源码

js 复制代码
# 克隆源码,拉取标签为v0.5.7的版本
$ git clone -b v0.5.7 https://github.com/ollama/ollama.git ollama-0.5.7
Cloning into 'ollama-0.5.7'...
remote: Enumerating objects: 30629, done.
remote: Counting objects: 100% (163/163), done.
remote: Compressing objects: 100% (106/106), done.
remote: Total 30629 (delta 111), reused 57 (delta 57), pack-reused 30466 (from 4)
Receiving objects: 100% (30629/30629), 33.54 MiB | 1.79 MiB/s, done.
Resolving deltas: 100% (19453/19453), done.
Note: switching to 'a420a453b4783841e3e79c248ef0fe9548df6914'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by switching back to a branch.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -c with the switch command. Example:

  git switch -c <new-branch-name>

Or undo this operation with:

  git switch -

Turn off this advice by setting config variable advice.detachedHead to false
$ cd ollama-0.5.7
$ go mod tidy
$ export CGO_ENABLED=1
$ make help
The following make targets will help you build Ollama

    make all           # (default target) Build Ollama llm subprocess runners, and the primary ollama executable
    make runners        # Build Ollama llm subprocess runners; after you may use 'go build .' to build the primary ollama exectuable
    make <runner>        # Build specific runners. Enabled: 'cpu'
    make dist        # Build the runners and primary ollama executable for distribution
    make help-sync         # Help information on vendor update targets
    make help-runners     # Help information on runner targets

The following make targets will help you test Ollama

    make test           # Run unit tests
    make integration    # Run integration tests.  You must 'make all' first
    make lint           # Run lint and style tests

For more information see 'docs/development.md'
# 执行编译
$ make -j 5
GOARCH=amd64 go build -buildmode=pie "-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=0.5.7-0-ga420a45\"  " -trimpath -tags "avx" -o llama/build/linux-amd64/runners/cpu_avx/ollama_llama_server ./cmd/runner
GOARCH=amd64 go build -buildmode=pie "-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=0.5.7-0-ga420a45\"  " -trimpath -tags "avx,avx2" -o llama/build/linux-amd64/runners/cpu_avx2/ollama_llama_server ./cmd/runner
GOARCH=amd64 go build -buildmode=pie "-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=0.5.7-0-ga420a45\"  " -trimpath  -o ollama .
# 仅编译主程序(ollama)
$ go build .

编译完成后将生成运行器(ollama_llama_server)和主程序(ollama)

js 复制代码
$ find . -type f -executable | grep -v ".sh" | grep -v ".sample"
./ollama
./llama/build/linux-amd64/runners/cpu_avx2/ollama_llama_server
./llama/build/linux-amd64/runners/cpu_avx/ollama_llama_server

运行测试

js 复制代码
$ ./ollama --help
Large language model runner

Usage:
  ollama [flags]
  ollama [command]

Available Commands:
  serve       Start ollama
  create      Create a model from a Modelfile
  show        Show information for a model
  run         Run a model
  stop        Stop a running model
  pull        Pull a model from a registry
  push        Push a model to a registry
  list        List models
  ps          List running models
  cp          Copy a model
  rm          Remove a model
  help        Help about any command

Flags:
  -h, --help      help for ollama
  -v, --version   Show version information

Use "ollama [command] --help" for more information about a command.
# 启动服务
$ ./ollama serve > ollama.log 2>&1 &
# 运行模型
$ ./ollama run deepseek-r1:1.5b "你是谁?"
<think>

</think>

您好!我是由中国的深度求索(DeepSeek)公司开发的智能助手DeepSeek-R1。如您有任何任何问题,我会尽我所能为您提供帮助。
相关推荐
砖业林coco2 小时前
go语言使用 zhinao-go 轻松调用 360智脑
llm·go
Baihai_IDP3 小时前
怎样为你的 RAG 应用选择合适的嵌入模型?
人工智能·llm·aigc
常先森3 小时前
【解密源码】 RAGFlow 切分最佳实践- naive parser 语义切块(pdf 篇)
架构·llm·agent
多喝开水少熬夜19 小时前
损失函数系列:focal-Dice-vgg
图像处理·python·算法·大模型·llm
大千AI助手21 小时前
微软SPARTA框架:高效稀疏注意力机制详解
人工智能·深度学习·神经网络·llm·大千ai助手·sparta·稀疏注意力机制
Cyril_KI1 天前
大模型长文生成中的幻觉与事实性:研究进展综述
大模型·llm·github·综述·幻觉
智泊AI1 天前
AI大模型八股 | 多模态RAG怎么做?
llm
win4r1 天前
🚀超越DeepSeek-OCR!OCR领域的革命性突破:Chandra OCR本地部署+真实测评!手写体、繁体字、数学公式、重叠文字全部完美识别,告别漏字漏页
llm·aigc·deepseek
FreeCode1 天前
Agent开发:LangChain1.0快速入门(一)
人工智能·llm·agent
数据智能老司机1 天前
使用 Python 入门 Model Context Protocol(MCP)——构建客户端
llm·agent·mcp