多模态模型在做选择题时,如何设置Prompt,如何精准定位我们需要的选项

我们这里以Qwen2-VL-7B-instruct为例:

假设我们需要分析一张图片的情绪(从现有的情绪中进行选择),并且我们需要它以思维链的形式展现出来,我们可以这样设置prompt:

python 复制代码
emotion6_CoT = """
Analyze the given image and determine the emotion it represents.
Emotional options :(A) anger (B) disgust (C) fear (D) joy (E) sadness (F) surprise (G) neutral
Your output should follow this format strictly:
# analyze 
Your analyze here
# answer
Choice index, one of A-G
"""

这样设计的好处是,最终的answer中一定会有 # analyze 和 # answer 我们就可以利用正则表达式去进行准确提取:假设我们要提取其中的选项,我们可以这样写:

python 复制代码
def remove_words(s):
    # 定义需要删除的词汇列表
    words_to_remove = ['Choice', 'index', 'one', 'of', 'A-G']

    # 使用正则表达式删除这些词
    for word in words_to_remove:
        s = re.sub(r'\b' + word + r'\b', '', s)

    # 去除多余的空格
    s = re.sub(r'\s+', ' ', s).strip()

    return s

#ouput为输出列表,我们需要将里面的字符串进行提取,所以为output_text[0]。

option = re.search(r'[A-H]', remove_words(output_text[0].split("# answer")[1]))

最终,我们可以借用字典去匹配对应情绪即可。

注意:在一些推理能力不强的模型中(例如 Qwen2-base-7B),可能会遇到输出依然不遵循prompt的回答,这是正常的。

相关推荐
小小工匠4 小时前
LLM - 从 Prompt 到 Skills
prompt·skills
da_vinci_x16 小时前
PS 场景美术革命:3 分钟量产 4K 无缝贴图,从此告别“Offset”去缝加班
人工智能·游戏·prompt·aigc·贴图·技术美术·游戏美术
sinat_286945191 天前
AI Coding LSP
人工智能·算法·prompt·transformer
GISer_Jing1 天前
智能体工具使用、规划模式
人工智能·设计模式·prompt·aigc
切糕师学AI1 天前
AI 领域中的 Prompt(提示词/提示)是什么?
人工智能·prompt
效率客栈老秦2 天前
Python Trae提示词开发实战(12):AI实现API自动化批量调用与数据处理让效率提升10倍
人工智能·python·ai·prompt·trae
猫头虎2 天前
2025年AI领域年度深度总结:始于DeepSeek R1开源发布,终于Manus天价出海
人工智能·langchain·开源·prompt·aigc·ai编程·编程技术
新元代码2 天前
论文写作 Prompt 模板库
prompt
谁怕平生太急2 天前
MAI-UI的prompt
ui·prompt·gui agent·mai-ui
无妄无望2 天前
The Prompt Report: A Systematic Survey of Prompt Engineering Techniques(文本部分 )
人工智能·自然语言处理·prompt