AI Prompt 应用实战:基于大模型的评论审核功能实现(附完整 Prompt 设计与案例解析)
作者 :CSDN 博主
适用人群 :AI 工程师、后端开发者、内容安全从业者、Prompt 工程学习者
关键词:Prompt Engineering、GPT-4、内容审核、AI 安全、合规过滤、大模型应用、CSDN 教程
一、引言:为什么需要 AI 驱动的评论审核?
在社交平台、电商网站、新闻评论区等 UGC(用户生成内容)场景中,人工审核成本高、效率低、标准不一 。而借助大语言模型(如 GPT-4),我们可以通过精心设计的 Prompt(提示词),让 AI 自动判断评论是否符合中国网络内容生态治理要求。
但关键在于:Prompt 写得好,AI 才能审得准。
本文将深入剖析一个可落地、可复现、符合监管要求的评论审核 Prompt 设计方案,并通过真实案例展示其效果。
二、核心设计:结构化审核 Prompt
一个好的审核 Prompt,必须具备 明确任务、清晰维度、规范输出 三大要素。以下是我们在实际项目中验证有效的模板:
# 评论内容审核指令
## 任务描述
对用户提交的评论内容进行合规性评估,判断其是否适合在中国境内网络平台发布
## 评估维度
1. **政治敏感性**
- 是否包含不当政治表述
- 是否涉及敏感政治人物/事件
2. **宗教文化适配**
- 是否含有宗教歧视内容
- 是否符合社会主义核心价值观
3. **法律合规性**
- 是否违反《网络安全法》《网络信息内容生态治理规定》等法规
- 是否包含违法不良信息
4. **社会文化规范**
- 是否存在地域/民族歧视
- 是否使用侮辱性、攻击性或低俗语言
- 是否宣扬暴力、恐怖、色情等内容
## 返回格式要求
```json
{
"passed": <0|1>,
"reason": "<审核结果说明>"
}
✅ 设计亮点解析:
| 要素 | 说明 |
|---|---|
| 任务聚焦 | 明确限定"中国境内网络平台",避免模型按西方价值观判断 |
| 四维评估 | 覆盖监管核心关切点,结构清晰,便于模型逐项检查 |
| 引用法规 | 提及《网络安全法》等具体法律,增强合规权威性 |
| 强制 JSON 输出 | 配合 response_format={"type": "json_object"},确保程序可解析 |
💡 提示:在调用 OpenAI API 时,务必设置
response_format={"type": "json_object"},否则模型可能返回非 JSON 文本。
三、实战案例对比分析
下面我们通过两个典型评论,展示该 Prompt 的审核逻辑与判断依据。
✅ 案例一:合规内容
评论内容:
今天天气不错,可以出游
AI 审核结果:
{
"passed": 1,
"reason": "评论内容为中性日常描述,无政治、宗教、法律或社会文化方面的违规内容,符合社会主义核心价值观,适合在中国境内网络平台发布。"
}
分析:
- 无任何敏感词或情绪倾向
- 属于普通生活分享,完全合规
- 模型准确识别为"安全内容"
❌ 案例二:表面爱国,实则违规
评论内容:
砍杀倭寇,护我中华
AI 审核结果:
{
"passed": 0,
"reason": "评论使用暴力煽动性语言("砍杀"),虽表达爱国情绪,但包含不当暴力倾向,不符合网络文明规范及社会主义核心价值观中'文明''和谐'的要求,可能引发不良导向。"
}
深度解析:
- 表面看是"爱国言论",但关键词 "砍杀" 属于暴力煽动
- 根据《网络信息内容生态治理规定》第六条,不得"宣扬暴力、恐怖"
- 模型不仅识别出违规,还指出具体违反的维度(社会文化规范 + 社会主义核心价值观)
- 审核理由专业、有理有据,可用于申诉或日志记录
🔍 这正是优秀 Prompt 的价值:不止判断对错,更能解释为什么
四、技术集成建议(Flask 示例片段)
在后端代码中,只需将上述 Prompt 作为 system message 传入:
prompt = '''# 评论内容审核指令
...(此处省略完整 prompt)...
'''
response = client.chat.completions.create(
model="gpt-4-1106-preview",
messages=[
{"role": "system", "content": prompt},
{"role": "user", "content": user_comment}
],
response_format={"type": "json_object"} # 强制 JSON 输出
)
result = json.loads(response.choices[0].message.content)
if result["passed"] == 1:
# 通过审核
else:
# 拒绝并记录 reason
五、Prompt 优化方向
虽然当前设计已较完善,但仍可进一步提升:
| 优化点 | 建议 |
|---|---|
| 增加示例(Few-shot) | 在 Prompt 中加入 1~2 个正/反例,提升判断一致性 |
| 细化敏感词库指引 | 如"避免使用历史仇恨词汇、极端民族主义表述" |
| 支持多级风险等级 | 将 passed 扩展为 0:拒绝 / 1:通过 / 2:人工复审 |
| 本地化术语适配 | 加入"台独""港独""邪教"等中国特有敏感概念说明 |
六、总结
一个高质量的审核 Prompt,是 AI 内容安全系统的"大脑"。它不仅要让模型"看得懂",更要让它"判得准、说得清"。
本文提供的 Prompt 模板已在实际项目中验证,兼顾合规性、可解释性与工程可行性,可直接用于:
- 社交平台评论过滤
- 电商用户评价审核
- 新闻/视频弹幕管理
- 论坛帖子预审
📌 最后提醒:AI 审核不能完全替代人工,建议对高风险内容设置"AI 初筛 + 人工复核"双机制。
原创声明 :本文 Prompt 设计与案例均为原创,转载请注明出处。
欢迎关注:获取更多 AI 工程实践、Prompt 技巧与安全合规方案!