Note_Fem边界条件的处理和numpy实现的四种方法

将单元刚度矩阵组装为全局刚度矩阵后,有:

此时的线性方程没有唯一解,\([K]\)是奇异矩阵,这是没有引入边界条件,消除刚体位移的原因.

边界条件分为两类:Forced and Geometric;对于力边界条件可以直接附加到节点力向量\([P]\)中,即\(P_j=P_j^{*}\),\(P_j^{*}\)是给定的节点力值.

因此我们基本只需要处理Geometric Boundary condition.下面介绍三种方法,将Bcs引入到\([K]、[P]\)

以位移边界条件为例,指定相关自由度值即:\(\Phi_j=\Phi_j^{*}\)

Method 1

将开头的\([K][\Phi]=[P]\)划分为:

\[\begin{bmatrix} [K_{11}] & [K_{12}] \\ [K_{21}] & [K_{22}] \end{bmatrix} \begin{Bmatrix} \overrightarrow{\Phi}_1 \\ \overrightarrow{\Phi}_2 \end{Bmatrix}= \begin{Bmatrix} \overrightarrow{P}_1 \\ \overrightarrow{P}_2 \end{Bmatrix} \tag{1} \]

其中,\(\Phi_1\)是未知的自由节点自由度向量(free dofs);\(\Phi_2\)是已知的约束节点自由度值\(\Phi_j^{*}\)向量(specified nodal dof);\(P_1\)是已知节点力 向量;\(P_2\)是未知的支反力向量

公式2进一步:

\[[K_{11}]\overrightarrow{\Phi}1+[K{12}]\overrightarrow{\Phi}_2=\overrightarrow{P}_1\tag{2} \]

\[[K_{21}]\overrightarrow{\Phi}1+[K{22}]\overrightarrow{\Phi}_2=\overrightarrow{P}_2\tag{3} \]

这时,\([K_{11}]\)是非奇异矩阵.因此**自由节点自由度(未知节点位移)**可求:

\[\overrightarrow{\Phi}1=[K{11}]^{-1}(\overrightarrow{P}1-[K{12}]\overrightarrow{\Phi}_2)\tag{4} \]

一旦\(\Phi_1\)求得,则未知支反力\(P_2\)可由公式3求得.

Method 2

也称划行划列法 .method 1 中需要对\([K] ,[\Phi],[P]\)进行行列对调,重新排序.当出现非0位移边界时,method 1耗时长且需要记录过程,之后还需要恢复刚度矩阵.因此和method 1等效的处理方法是构建下式:

\[\begin{bmatrix} \left[K_{11}\right] & \left[0\right] \\ \left[0\right] & \left[I\right] \end{bmatrix} \begin{bmatrix} \overrightarrow{\Phi}_1 \\ \overrightarrow{\Phi}_2 \end{bmatrix}= \begin{bmatrix} \overrightarrow{P}1-\left[K{12}\right]\overrightarrow{\Phi}_2\\{\overrightarrow{\Phi}_2} \end{bmatrix}\tag{5} \]

实际计算中,不需要对刚度阵重新排序.算法操作如下:


对所有的约束自由度\(\Phi_j\)重复Step 1~3即可,这种操作能够保持刚度和方程的对称性.

Method 3

该方法也称乘大数法 .假设约束自由度为\(\Phi_j=\Phi_j^*\),操作如下:

该方法通用性强,适合大多数的静力学线性问题,但数值精度与大数的取值有关,太小了精度差,太大了容易出现"矩阵奇异"的现象

Method 4(对角元素置1法)

该方法的做法是,对于约束自由度\(\Phi_j=0\),把\([K]\)的j行j列置0,但对角元素Kjj=1,\([P]\)中对应元素置0.

以6x6的刚度矩阵为例子,

\[\begin{gathered} \begin{bmatrix} k_{11} & k_{12} & 0 & k_{14} & k_{15} & k_{16} \\ k_{21} & k_{22} & 0 & k_{24} & k_{25} & k_{26} \\ 0 & 0 & 1 & 0 & 0 & 0 \\ k_{41} & k_{42} & 0 & k_{44} & k_{45} & k_{46} \\ k_{51} & k_{52} & 0 & k_{54} & k_{55} & k_{56} \\ k_{e1} & k_{e3} & 0 & k_{eA} & k_{e5} & k_{e6} \end{bmatrix} \begin{bmatrix} \delta_1 \\ \delta_2 \\ \delta_3 \\ \delta_4 \\ \delta_5 \\ \delta_6 \end{bmatrix}= \begin{bmatrix} f_1 \\ f_2 \\ 0 \\ f_4 \\ f_5 \\ f_6 \end{bmatrix} \end{gathered} \]

不引入大数,避免了数值稳定性的问题,不会影响矩阵的条件数; 但只适合\(\Phi_j=0\)这样的简单边界 ;可能影响系统矩阵的特性,直接替换可能改变矩阵的对称性(尤其在动力学和非线性问题中);不能处理非0的位移加载,只能处理力加载

Example

例题来自《The Finite Element Method in Engineering》的悬臂梁模型(example6.4, page227)

静力平衡方程为:

解为:

\[W=[0,0,-16.5667,-0.2480] \]

\[P=[50.0,4980.0,-50,20] \]

solve by method 1

solve by method 2

循环每个位移约束,需要注意高亮处的操作:

求解:

solve by method 3

Code Realize

四种方法进行Python+Numpy+Scipy编程实现,并与Example的解进行对比.

python 复制代码
#-------------------------------------------------------------------------------
# Name:        BcsProcess
# Purpose:     引入边界条件到[K]中,并返回解[U],[P]
#               input:
#                   K:全局刚度矩阵,(M,M) numpy.array
#                   BcDict:位移约束,key (int) = 自由度序号(1-based) , value (float) = 自由度约束值
#                   LoadDict:节点力加载,key (int) = 自由度序号(1-based) , value (float) = 施加的节点力加载或者等效节点力加载
#
# Author:      Administrator
#
# Created:     08-03-2025
# Copyright:   (c) Administrator 2025
# Licence:     <your licence>
#-------------------------------------------------------------------------------
import numpy as np
from typing import Dict,List,Tuple
import scipy as sc
def Method1(K:np.ndarray,BcDict:Dict[int,float],LoadDict:Dict[int,float])->Tuple:
    dofNum=K.shape[0]
    # 初始化向量
    U,P=np.zeros((dofNum,1)),np.zeros((dofNum,1))
    prescribedDofIndexs=np.array(list(BcDict.keys()))-1

    #使用集合运算,全部自由度与约束自由度求差, 得到自由位移自由度的
    freeDofIndexs=np.array(list(set(range(dofNum))-set(prescribedDofIndexs.tolist())),dtype=int)

    # 已知节点力加到P
    for label,Pval in LoadDict.items():
        ind=label-1
        P[ind,0]+=Pval
    # 已知节点位移(prescribed dof)
    for label,Uval in BcDict.items():
        ind=label-1
        U[ind,0]+=Uval
    U2=U[np.ix_(prescribedDofIndexs,[0])].copy()
    # 已知节点力(free dof)
    P1=P[np.ix_(freeDofIndexs,[0])].copy()
    # 重新划分K行列
    K11=K[np.ix_(freeDofIndexs,freeDofIndexs)].copy()
    K12=K[np.ix_(freeDofIndexs,prescribedDofIndexs)].copy()
    K21=K[np.ix_(prescribedDofIndexs,freeDofIndexs)].copy()
    K22=K[np.ix_(prescribedDofIndexs,prescribedDofIndexs)].copy()
    # 计算自由节点位移值
    U1=np.dot(sc.linalg.inv(K11),P1-K12.dot(U2))
    # 计算支反力
    P2=np.dot(K21,U1)+np.dot(K22,U2)

    # 合并到U,P向量
    U[np.ix_(freeDofIndexs,[0])]=U1
    P[np.ix_(prescribedDofIndexs,[0])]=P2
    return U,P

def Method2(K:np.ndarray,BcDict:Dict[int,float],LoadDict:Dict[int,float])->Tuple:
    K_origin=K.copy()
    dofNum=K.shape[0]
    # 初始化向量
    U,P=np.zeros((dofNum,1)),np.zeros((dofNum,1))
    # 已知节点力加到 P
    for label,Pval in LoadDict.items():
        ind=label-1
        P[ind,0]+=Pval
    # 循环所有的位移约束
    for label,Uval in BcDict.items():
        j=label-1
        #Step1
        for i in range(dofNum):
            P[i,0]=P[i,0]-K[i,j]*Uval
        #Step2
        for i in range(dofNum):
            K[i,j]=0
            K[j,i]=0
        K[j,j]=1
        #Step3
        P[j,0]=Uval

    # 求解 K'U=P'
    U_=sc.linalg.solve(K,P)
    P_=np.dot(K_origin,U_)

    return U_,P_

def Method3(K:np.ndarray,BcDict:Dict[int,float],LoadDict:Dict[int,float])->Tuple:
    C=np.max(K)*10e6
    K_origin=K.copy()
    dofNum=K.shape[0]
    # 初始化向量
    U,P=np.zeros((dofNum,1)),np.zeros((dofNum,1))
    # 已知节点力加到 P
    for label,Pval in LoadDict.items():
        ind=label-1
        P[ind,0]+=Pval
    # 循环所有位移约束
    for label,Uval in BcDict.items():
        j=label-1
        # Step1
        K[j,j]=K[j,j]*C
        # Step2
        P[j,0]=K[j,j]*Uval

    # 求解 K'U=P'
    U_=sc.linalg.solve(K,P)
    P_=np.dot(K_origin,U_)

    return U_,P_

def Method4(K:np.ndarray,BcDict:Dict[int,float],LoadDict:Dict[int,float])->Tuple:
    if np.any(np.array(list(BcDict.values())) != 0):
       raise ValueError('该方法不能处理非0位移加载')
    K_origin=K.copy()
    dofNum=K.shape[0]
    # 初始化向量
    U,P=np.zeros((dofNum,1)),np.zeros((dofNum,1))

    # 已知节点力加到 P
    for label,Pval in LoadDict.items():
        ind=label-1
        P[ind,0]+=Pval

    # loop all nodal bcs
    for label, Uval in BcDict.items():
        j=label-1
        K[j,:]=0.0
        K[:,j]=0.0
        K[j,j]=1.0
        P[j,0]=0

    # solve K'U=P'
    U_=sc.linalg.solve(K,P)
    P_=np.dot(K_origin,U_)

    return U_,P_

if __name__ == '__main__':
    K=np.array([[12,600,-12,600],
                [600,40000,-600,20000],
                [-12,-600,12,-600],
                [600,20000,-600,40000]])
    Bcs={1:0,2:0}
    loads={3:-50,4:20}

    # 精确解
    extract_U=np.array([0,0,-16.5667,-0.2480])
    extract_P=np.array([50.0,4980.0,-50,20])
    # 求解
    u,p=Method4(K,Bcs,loads)

    print(f"extract U=\n{extract_U}")
    print(f"u=\n{u.T}")
    print(f"extract_P=\n{extract_P}")
    print(f"p=\n{p.T}")

计算结果:

shell 复制代码
extract_U=
[  0.       0.     -16.5667  -0.248 ]
extract_P=
[  50. 4980.  -50.   20.]

solving by method 1
u=
[[  0.           0.         -16.56666667  -0.248     ]]
p=
[[  50. 4980.  -50.   20.]]

solving by method 2
u=
[[  0.           0.         -16.56666667  -0.248     ]]
p=
[[  50. 4980.  -50.   20.]]

solving by method 3
u=
[[-1.04166667e-11 -3.11250000e-13 -1.65666667e+01 -2.48000000e-01]]
p=
[[  50. 4980.  -50.   20.]]

solving by method 4
u=
[[  0.           0.         -16.56666667  -0.248     ]]
p=
[[  50. 4980.  -50.   20.]]

总结

列举了四种直接节点位移边界条件的处理办法,并编程实现,求解案例.对比结果发现:相比Method3存在数值误差,其他三个都更加精确.

如果需要处理多点耦合边界条件,则有罚函数法,拉格朗日乘子法等.

参考资料:

Note Completed at 2025/03/08