kafka + flink +mysql 案例

假设你有两个Kafka主题:user_activities_topicproduct_views_topic,并且你希望将user_activities_topic中的数据写入到user_activities表,而将product_views_topic中的数据写入到product_views表。

maven

<dependencies>
    <!-- Apache Flink dependencies -->
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-streaming-java_2.12</artifactId>
        <version>1.14.0</version>
    </dependency>
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-connector-kafka_2.12</artifactId>
        <version>1.14.0</version>
    </dependency>
    <dependency>
        <groupId>org.apache.flink</groupId>
        <artifactId>flink-connector-jdbc_2.12</artifactId>
        <version>1.14.0</version>
    </dependency>

    <!-- MySQL JDBC Driver -->
    <dependency>
        <groupId>mysql</groupId>
        <artifactId>mysql-connector-java</artifactId>
        <version>8.0.26</version>
    </dependency>
</dependencies>
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.connector.jdbc.JdbcConnectionOptions;
import org.apache.flink.connector.jdbc.JdbcSink;

import java.util.Properties;

public class MultipleKafkaToFlinkToMysql {

    public static void main(String[] args) throws Exception {
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 配置Kafka消费者属性
        Properties kafkaProperties = new Properties();
        kafkaProperties.setProperty("bootstrap.servers", "localhost:9092");
        kafkaProperties.setProperty("group.id", "test");

        // 创建第一个Kafka消费者 (User Activities)
        FlinkKafkaConsumer<String> userActivitiesConsumer = new FlinkKafkaConsumer<>(
                "user_activities_topic",
                new SimpleStringSchema(),
                kafkaProperties);

        // 创建第二个Kafka消费者 (Product Views)
        FlinkKafkaConsumer<String> productViewsConsumer = new FlinkKafkaConsumer<>(
                "product_views_topic",
                new SimpleStringSchema(),
                kafkaProperties);

        // 从Kafka获取用户活动数据流
        env.addSource(userActivitiesConsumer)
           .map(value -> {
               String[] parts = value.split(",");
               return new UserActivity(parts[0], parts[1]);
           })
           .addSink(JdbcSink.sink(
                   "INSERT INTO user_activities (user_id, activity) VALUES (?, ?)",
                   (statement, userActivity) -> {
                       statement.setString(1, userActivity.userId);
                       statement.setString(2, userActivity.activity);
                   },
                   new JdbcConnectionOptions.JdbcConnectionOptionsBuilder()
                           .withUrl("jdbc:mysql://localhost:3306/your_database")
                           .withDriverName("com.mysql.cj.jdbc.Driver")
                           .withUsername("your_username")
                           .withPassword("your_password")
                           .build()));

        // 从Kafka获取产品浏览数据流
        env.addSource(productViewsConsumer)
           .map(value -> {
               String[] parts = value.split(",");
               return new ProductView(parts[0], Integer.parseInt(parts[1]));
           })
           .addSink(JdbcSink.sink(
                   "INSERT INTO product_views (user_id, product_id) VALUES (?, ?)",
                   (statement, productView) -> {
                       statement.setString(1, productView.userId);
                       statement.setInt(2, productView.productId);
                   },
                   new JdbcConnectionOptions.JdbcConnectionOptionsBuilder()
                           .withUrl("jdbc:mysql://localhost:3306/your_database")
                           .withDriverName("com.mysql.cj.jdbc.Driver")
                           .withUsername("your_username")
                           .withPassword("your_password")
                           .build()));

        env.execute("Multiple Kafka to Multiple MySQL Tables with Flink");
    }

    // 用户活动类
    public static class UserActivity {
        public String userId;
        public String activity;

        public UserActivity(String userId, String activity) {
            this.userId = userId;
            this.activity = activity;
        }
    }

    // 产品浏览类
    public static class ProductView {
        public String userId;
        public int productId;

        public ProductView(String userId, int productId) {
            this.userId = userId;
            this.productId = productId;
        }
    }
}

当处理多个消费者和表时,直接为每个消费者编写独立的代码会导致代码冗长且难以维护。为了提高代码的可维护性和扩展性,可以采用一些设计模式和抽象方法来简化代码结构。以下是一些改进策略:

1. 使用工厂模式和配置文件

通过使用工厂模式和配置文件,可以将不同Kafka主题和MySQL表的映射关系抽象出来,从而减少重复代码。

2. 示例代码重构

下面是一个示例,展示了如何通过配置文件和工厂模式来管理多个Kafka消费者和相应的MySQL输出。

2.1 配置文件 (`application.yaml`)

首先,定义一个配置文件来描述每个消费者的配置信息,包括Kafka主题、目标MySQL表名以及字段映射等。

consumers:
  - name: user_activities_consumer
    kafka_topic: user_activities_topic
    mysql_table: user_activities
    fields:
      - { index: 0, column: user_id }
      - { index: 1, column: activity }

  - name: product_views_consumer
    kafka_topic: product_views_topic
    mysql_table: product_views
    fields:
      - { index: 0, column: user_id }
      - { index: 1, column: product_id }

2.2 工厂类 (`ConsumerFactory.java`)

创建一个工厂类,根据配置文件中的信息动态生成消费者并设置其数据处理逻辑。

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.connector.jdbc.JdbcSink;
import org.apache.flink.api.common.serialization.SimpleStringSchema;

import java.util.Properties;
import java.util.List;
import java.util.Map;

public class ConsumerFactory {

    public static void createAndRegisterConsumers(StreamExecutionEnvironment env, List<Map<String, Object>> consumers) {
        Properties kafkaProperties = new Properties();
        kafkaProperties.setProperty("bootstrap.servers", "localhost:9092");
        kafkaProperties.setProperty("group.id", "test");

        for (Map<String, Object> consumerConfig : consumers) {
            String kafkaTopic = (String) consumerConfig.get("kafka_topic");
            String mysqlTable = (String) consumerConfig.get("mysql_table");
            List<Map<String, Object>> fields = (List<Map<String, Object>>) consumerConfig.get("fields");

            FlinkKafkaConsumer<String> kafkaConsumer = new FlinkKafkaConsumer<>(
                    kafkaTopic,
                    new SimpleStringSchema(),
                    kafkaProperties);

            env.addSource(kafkaConsumer)
               .map(value -> parseMessage(value, fields))
               .addSink(JdbcSink.sink(
                       generateInsertSQL(mysqlTable, fields),
                       (statement, record) -> populateStatement(statement, record, fields),
                       new JdbcConnectionOptions.JdbcConnectionOptionsBuilder()
                               .withUrl("jdbc:mysql://localhost:3306/your_database")
                               .withDriverName("com.mysql.cj.jdbc.Driver")
                               .withUsername("your_username")
                               .withPassword("your_password")
                               .build()));
        }
    }

    private static Map<String, Object> parseMessage(String value, List<Map<String, Object>> fields) {
        String[] parts = value.split(",");
        return fields.stream().collect(Collectors.toMap(
                field -> (String) field.get("column"),
                field -> parts[(Integer) field.get("index")]
        ));
    }

    private static String generateInsertSQL(String table, List<Map<String, Object>> fields) {
        StringBuilder columns = new StringBuilder();
        StringBuilder placeholders = new StringBuilder();

        for (int i = 0; i < fields.size(); i++) {
            if (i > 0) {
                columns.append(", ");
                placeholders.append(", ");
            }
            columns.append(fields.get(i).get("column"));
            placeholders.append("?");
        }

        return "INSERT INTO " + table + " (" + columns.toString() + ") VALUES (" + placeholders.toString() + ")";
    }

    private static void populateStatement(java.sql.PreparedStatement statement, Map<String, Object> record, List<Map<String, Object>> fields) throws Exception {
        for (int i = 0; i < fields.size(); i++) {
            String column = (String) fields.get(i).get("column");
            Object value = record.get(column);
            if (value instanceof Integer) {
                statement.setInt(i + 1, (Integer) value);
            } else if (value instanceof String) {
                statement.setString(i + 1, (String) value);
            }
            // 其他类型可以根据需要添加
        }
    }
}

2.3 主程序 (`Main.java`)

在主程序中加载配置文件,并调用工厂类来注册所有消费者。

import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.yaml.snakeyaml.Yaml;

import java.io.InputStream;
import java.util.List;
import java.util.Map;

public class Main {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        Yaml yaml = new Yaml();
        InputStream inputStream = Main.class.getClassLoader().getResourceAsStream("application.yaml");
        Map<String, Object> config = yaml.load(inputStream);

        List<Map<String, Object>> consumers = (List<Map<String, Object>>) config.get("consumers");

        ConsumerFactory.createAndRegisterConsumers(env, consumers);

        env.execute("Multiple Kafka to Multiple MySQL Tables with Flink");
    }
}

关键点解释

  1. **配置文件**:通过配置文件定义每个消费者的信息,使得添加新的消费者变得简单,只需修改配置文件即可。

  2. **工厂模式**:使用工厂类 `ConsumerFactory` 根据配置动态创建消费者,并为其设置数据处理逻辑和输出目标。

  3. **通用的数据处理逻辑**:`parseMessage` 方法根据配置文件中的字段映射解析消息,`generateInsertSQL` 和 `populateStatement` 方法则用于生成插入SQL语句和填充PreparedStatement。

  4. **扩展性**:这种设计方式非常灵活,易于扩展。如果需要增加新的消费者或修改现有消费者的配置,只需更新配置文件而无需更改代码逻辑。

这种方法不仅减少了代码量,还提高了代码的可维护性和扩展性,使得系统更容易管理和维护。

相关推荐
可乐cc呀1 小时前
kafka单机部署实战
分布式·zookeeper·kafka
站在墙头上6 小时前
Kafka的各个组件说明
分布式·kafka
24k小善14 小时前
flink集成tidb cdc
大数据·flink·tidb
程序员的世界你不懂15 小时前
Kafka 推送消息,移动端自动化测试,数据驱动测试
分布式·kafka·linq
*星星之火*21 小时前
【Flink银行反欺诈系统设计方案】3.欺诈的7种场景和架构方案、核心表设计
大数据·架构·flink
计算机软件程序设计1 天前
Windows下安装kafka
windows·分布式·kafka
java技术小馆1 天前
Kafka 消息传递模型
分布式·kafka
HBryce241 天前
Kafka&&RocketMQ
分布式·kafka·rocketmq
一个儒雅随和的男子1 天前
kafka消息中间件的rebalance机制
分布式·kafka