大语言模型学习--向量数据库Milvus实践

Milvus是目前比较流行的开源向量数据库,其官网地址

Milvus 是什么? | Milvus 文档

1.Milvus简介

Milvus 是一种高性能、高扩展性的向量数据库。Milvus 提供强大的数据建模功能,能够将非结构化或多模式数据组织成结构化的 Collections。它支持多种数据类型,适用于不同的属性模型,包括常见的数字和字符类型、各种向量类型、数组、集合和 JSON。

Milvus 提供三种部署模式

  • Milvus Lite 是一个 Python 库,可以轻松集成到您的应用程序中。作为 Milvus 的轻量级版本,它非常适合在 Jupyter Notebooks 中进行快速原型开发,或在资源有限的边缘设备上运行。
  • Milvus Standalone 是单机服务器部署,所有组件都捆绑在一个 Docker 镜像中,方便部署。
  • Milvus Distributed 可部署在 Kubernetes 集群上,采用云原生架构,专为十亿规模甚至更大的场景而设计。该架构可确保关键组件的冗余。

Milvus 的云原生和高度解耦的系统架构

2.Milvus实践

推荐一个在线python运行环境(再也不用本地windows安装linux虚拟机了)

玻尔 | 全球科学家的 AI for Science 空间站

下面使用Milvus Lite本地实践一下,Milvus Lite,它是pymilvus 中包含的一个 python 库,可以嵌入到客户端应用程序中。

安装Milvus

复制代码
pip install -U pymilvus

设置向量数据库

复制代码
from pymilvus import MilvusClient
client = MilvusClient("milvus_demo.db")

创建Collections

复制代码
if client.has_collection(collection_name="demo_collection"):
    client.drop_collection(collection_name="demo_collection")
client.create_collection(
    collection_name="demo_collection",
    dimension=768,  # The vectors we will use in this demo has 768 dimensions
)

用向量表示文本

复制代码
import random

docs = [
    "Artificial intelligence was founded as an academic discipline in 1956.",
    "Alan Turing was the first person to conduct substantial research in AI.",
    "Born in Maida Vale, London, Turing was raised in southern England.",
]
vectors = [[random.uniform(-1, 1) for _ in range(768)] for _ in docs]
data = [
    {"id": i, "vector": vectors[i], "text": docs[i], "subject": "history"}
    for i in range(len(vectors))
]

print("Data has", len(data), "entities, each with fields: ", data[0].keys())
print("Vector dim:", len(data[0]["vector"]))

插入数据

复制代码
res = client.insert(collection_name="demo_collection", data=data)

print(res)

向量搜索

复制代码
# query_vectors = embedding_fn.encode_queries(["Who is Alan Turing?"])
# If you don't have the embedding function you can use a fake vector to finish the demo:
query_vectors = [ [ random.uniform(-1, 1) for _ in range(768) ] ]
res = client.search(
    collection_name="demo_collection",  # target collection
    data=query_vectors,  # query vectors
    limit=2,  # number of returned entities
    output_fields=["text", "subject"],  # specifies fields to be returned
)
print(res)

其他一些操作可以参考官网文档

管理数据库 | Milvus 文档

相关推荐
程序员鱼皮18 小时前
Claude 封杀中国后,我终于找到了平替!
计算机·ai·程序员·大模型·互联网
山顶夕景21 小时前
【MLLM】Qwen3-Omni全模态模型源码解读
大模型·llm·多模态·mllm
阿福Chris1 天前
Dify本地初始化后安装模型供应商瞬间失败控制台报错401
大模型·llm·dify·大模型工具
珊珊而川1 天前
pass@1是什么意思
大模型
丁学文武1 天前
大模型原理与实践:第三章-预训练语言模型详解_第2部分-Encoder-Decoder-T5
人工智能·语言模型·自然语言处理·大模型·t5·encoder-decoder
丁学文武2 天前
大模型原理与实践:第三章-预训练语言模型详解_第3部分-Decoder-Only(GPT、LLama、GLM)
人工智能·gpt·语言模型·自然语言处理·大模型·llama·glm
utmhikari3 天前
【测试人生】LLM赋能游戏自动化测试的一些想法
自动化测试·游戏·ai·大模型·llm·游戏测试
nju_spy3 天前
大模型面经(一) Prompt + RAG + 微调
人工智能·面试·lora·大模型·rag·提示词工程·peft微调
北邮刘老师3 天前
【未来】智能体互联时代的商业模式变化和挑战:从HOM到AOM
人工智能·大模型·智能体·智能体互联网
北邮刘老师3 天前
关于智能体互联协议标准的130天
人工智能·大模型·智能体·智能体互联网