大语言模型学习--向量数据库Milvus实践

Milvus是目前比较流行的开源向量数据库,其官网地址

Milvus 是什么? | Milvus 文档

1.Milvus简介

Milvus 是一种高性能、高扩展性的向量数据库。Milvus 提供强大的数据建模功能,能够将非结构化或多模式数据组织成结构化的 Collections。它支持多种数据类型,适用于不同的属性模型,包括常见的数字和字符类型、各种向量类型、数组、集合和 JSON。

Milvus 提供三种部署模式

  • Milvus Lite 是一个 Python 库,可以轻松集成到您的应用程序中。作为 Milvus 的轻量级版本,它非常适合在 Jupyter Notebooks 中进行快速原型开发,或在资源有限的边缘设备上运行。
  • Milvus Standalone 是单机服务器部署,所有组件都捆绑在一个 Docker 镜像中,方便部署。
  • Milvus Distributed 可部署在 Kubernetes 集群上,采用云原生架构,专为十亿规模甚至更大的场景而设计。该架构可确保关键组件的冗余。

Milvus 的云原生和高度解耦的系统架构

2.Milvus实践

推荐一个在线python运行环境(再也不用本地windows安装linux虚拟机了)

玻尔 | 全球科学家的 AI for Science 空间站

下面使用Milvus Lite本地实践一下,Milvus Lite,它是pymilvus 中包含的一个 python 库,可以嵌入到客户端应用程序中。

安装Milvus

复制代码
pip install -U pymilvus

设置向量数据库

复制代码
from pymilvus import MilvusClient
client = MilvusClient("milvus_demo.db")

创建Collections

复制代码
if client.has_collection(collection_name="demo_collection"):
    client.drop_collection(collection_name="demo_collection")
client.create_collection(
    collection_name="demo_collection",
    dimension=768,  # The vectors we will use in this demo has 768 dimensions
)

用向量表示文本

复制代码
import random

docs = [
    "Artificial intelligence was founded as an academic discipline in 1956.",
    "Alan Turing was the first person to conduct substantial research in AI.",
    "Born in Maida Vale, London, Turing was raised in southern England.",
]
vectors = [[random.uniform(-1, 1) for _ in range(768)] for _ in docs]
data = [
    {"id": i, "vector": vectors[i], "text": docs[i], "subject": "history"}
    for i in range(len(vectors))
]

print("Data has", len(data), "entities, each with fields: ", data[0].keys())
print("Vector dim:", len(data[0]["vector"]))

插入数据

复制代码
res = client.insert(collection_name="demo_collection", data=data)

print(res)

向量搜索

复制代码
# query_vectors = embedding_fn.encode_queries(["Who is Alan Turing?"])
# If you don't have the embedding function you can use a fake vector to finish the demo:
query_vectors = [ [ random.uniform(-1, 1) for _ in range(768) ] ]
res = client.search(
    collection_name="demo_collection",  # target collection
    data=query_vectors,  # query vectors
    limit=2,  # number of returned entities
    output_fields=["text", "subject"],  # specifies fields to be returned
)
print(res)

其他一些操作可以参考官网文档

管理数据库 | Milvus 文档

相关推荐
Ethan.Yuan13 小时前
【深度长文】Anthropic发布Prompt Engineering全新指南
大模型·llm·prompt·提示工程
zhayujie16 小时前
RAG优化实战 - LinkAI智能体平台的知识库升级之路
ai·大模型·agent·知识库·rag
造梦师阿鹏17 小时前
004.从 API 裸调到 LangChain
经验分享·ai·大模型·ai技术·大模型应用开发
AIGC安琪20 小时前
Transformer中的编码器和解码器是什么?
人工智能·深度学习·ai·语言模型·大模型·transformer·ai大模型
bug_undefine1 天前
UTMatrix VS VideoLingo 到底哪个好?
ai·大模型·视频翻译·videolingo·utmatrix
J_bean2 天前
Spring AI Alibaba 项目接入兼容 OpenAI API 的大模型
人工智能·spring·大模型·openai·spring ai·ai alibaba
青衫客362 天前
用 Python 实现一个“小型 ReAct 智能体”:思维链 + 工具调用 + 环境交互
python·大模型·llm·react
zhangbaolin2 天前
open webui源码分析3—一次对话
大模型·open webui
胡耀超2 天前
从哲学(业务)视角看待数据挖掘:从认知到实践的螺旋上升
人工智能·python·数据挖掘·大模型·特征工程·crisp-dm螺旋认知·批判性思维
leiya_1632 天前
私有化部署本地大模型+function Calling+本地数据库
人工智能·ai·大模型