复现无人机的项目,项目名称为Evidential Detection and Tracking Collaboration

项目名称为Evidential Detection and Tracking Collaboration,主要用于强大的反无人机系统,涉及新问题、基准和算法研究。下面介绍项目的复现步骤:

  1. 安装环境 :使用Anaconda创建并激活名为edtc的虚拟环境,Python版本为3.6,然后执行bash install_pytorch17.sh脚本安装相关依赖。
bash 复制代码
conda create -n edtc python=3.6
conda activate edtc
bash install_pytorch17.sh
  1. 训练YOLO检测器
    • 编辑数据集设置文件/path/to/EDTC/yolov5/data/antiuav.yaml,配置数据集路径等信息。
    • 进入/path/to/EDTC/yolov5目录,执行python train.py开始训练YOLO检测器。
bash 复制代码
cd /path/to/EDTC/yolov5
python train.py
  1. 训练跟踪分支
    • 运行python tracking/create_default_local_file.py --workspace_dir . --data_dir ./data --save_dir .命令设置项目路径,之后可通过编辑lib/train/admin/local.py(训练路径相关)、experiments/uavtrack/baseline.yaml(阶段1训练路径相关)、experiments/uavtrack_eh/baseline.yaml(阶段2训练路径相关)文件修改路径。
    • 阶段1训练:执行python tracking/train.py --script uavtrack --config baseline --save_dir . --mode multiple --nproc_per_node 8命令进行训练。
    • 阶段2训练:执行python tracking/train.py --script uavtrack_eh --config baseline --save_dir /PATH/TO/SAVE/UAVTRACK_EH --mode multiple --nproc_per_node 8 --stage1_model /STAGE1/MODEL/PATH命令进行训练,需指定阶段1模型的路径。
  2. 在AntiUAV600数据集上评估
    • 从[Models and Raw results](Google Driver)下载预训练模型。
    • 编辑lib/test/evaluation/local.py(测试路径相关)和experiments/uavtrack_eh/baseline.yaml(YOLO预训练模型路径,修改其中第133 - 134行)文件,设置相关路径。
    • 设置环境变量:
bash 复制代码
export PYTHONPATH=$PYTHONPATH:/path/to/EDTC
export PYTHONPATH=$PYTHONPATH:/path/to/EDTC/yolov5
复制代码
- 运行评估命令:`python tracking/test.py uavtrack_eh baseline --dataset antiuav --threads 32 --num_gpus 8 --params__model /path/to/UAVTrackEH.pth.tar --params__search_area_scale 4.55`。若要可视化跟踪结果,需编辑`/path/to/EDTC/lib/test/evaluation/environment.py`文件的第27行,将`self.show_result`设置为`True`。
- 执行`python tracking/evaluate_antiuav_performance.py`命令获取评估指标。

在复现过程中,若数据集尚未发布,需等待数据集发布后获取并按要求放置在指定路径。同时,确保各路径设置正确,若涉及多GPU训练,需保证GPU环境正常且符合代码要求。

相关推荐
还是转转18 小时前
AI Code Review 工具
人工智能·代码复审
艾莉丝努力练剑18 小时前
【Git:多人协作】Git多人协作实战:从同分支到多分支工作流
服务器·c++·人工智能·git·gitee·centos·项目管理
拓端研究室21 小时前
专题:2025AI产业全景洞察报告:企业应用、技术突破与市场机遇|附920+份报告PDF、数据、可视化模板汇总下载
大数据·人工智能·pdf
lumi.1 天前
Vue + Element Plus 实现AI文档解析与问答功能(含详细注释+核心逻辑解析)
前端·javascript·vue.js·人工智能
m0_650108241 天前
InstructBLIP:面向通用视觉语言模型的指令微调技术解析
论文阅读·人工智能·q-former·指令微调的视觉语言大模型·零样本跨任务泛化·通用视觉语言模型
金融小师妹1 天前
基于NLP语义解析的联储政策信号:强化学习框架下的12月降息概率回升动态建模
大数据·人工智能·深度学习·1024程序员节
AKAMAI1 天前
提升 EdgeWorker 可观测性:使用 DataStream 设置日志功能
人工智能·云计算
银空飞羽1 天前
让Trae CN SOLO自主发挥,看看能做出一个什么样的项目
前端·人工智能·trae
cg50171 天前
基于 Bert 基本模型进行 Fine-tuned
人工智能·深度学习·bert
Dev7z1 天前
基于Matlab图像处理的EAN条码自动识别系统设计与实现
图像处理·人工智能