复现无人机的项目,项目名称为Evidential Detection and Tracking Collaboration

项目名称为Evidential Detection and Tracking Collaboration,主要用于强大的反无人机系统,涉及新问题、基准和算法研究。下面介绍项目的复现步骤:

  1. 安装环境 :使用Anaconda创建并激活名为edtc的虚拟环境,Python版本为3.6,然后执行bash install_pytorch17.sh脚本安装相关依赖。
bash 复制代码
conda create -n edtc python=3.6
conda activate edtc
bash install_pytorch17.sh
  1. 训练YOLO检测器
    • 编辑数据集设置文件/path/to/EDTC/yolov5/data/antiuav.yaml,配置数据集路径等信息。
    • 进入/path/to/EDTC/yolov5目录,执行python train.py开始训练YOLO检测器。
bash 复制代码
cd /path/to/EDTC/yolov5
python train.py
  1. 训练跟踪分支
    • 运行python tracking/create_default_local_file.py --workspace_dir . --data_dir ./data --save_dir .命令设置项目路径,之后可通过编辑lib/train/admin/local.py(训练路径相关)、experiments/uavtrack/baseline.yaml(阶段1训练路径相关)、experiments/uavtrack_eh/baseline.yaml(阶段2训练路径相关)文件修改路径。
    • 阶段1训练:执行python tracking/train.py --script uavtrack --config baseline --save_dir . --mode multiple --nproc_per_node 8命令进行训练。
    • 阶段2训练:执行python tracking/train.py --script uavtrack_eh --config baseline --save_dir /PATH/TO/SAVE/UAVTRACK_EH --mode multiple --nproc_per_node 8 --stage1_model /STAGE1/MODEL/PATH命令进行训练,需指定阶段1模型的路径。
  2. 在AntiUAV600数据集上评估
    • 从[Models and Raw results](Google Driver)下载预训练模型。
    • 编辑lib/test/evaluation/local.py(测试路径相关)和experiments/uavtrack_eh/baseline.yaml(YOLO预训练模型路径,修改其中第133 - 134行)文件,设置相关路径。
    • 设置环境变量:
bash 复制代码
export PYTHONPATH=$PYTHONPATH:/path/to/EDTC
export PYTHONPATH=$PYTHONPATH:/path/to/EDTC/yolov5
复制代码
- 运行评估命令:`python tracking/test.py uavtrack_eh baseline --dataset antiuav --threads 32 --num_gpus 8 --params__model /path/to/UAVTrackEH.pth.tar --params__search_area_scale 4.55`。若要可视化跟踪结果,需编辑`/path/to/EDTC/lib/test/evaluation/environment.py`文件的第27行,将`self.show_result`设置为`True`。
- 执行`python tracking/evaluate_antiuav_performance.py`命令获取评估指标。

在复现过程中,若数据集尚未发布,需等待数据集发布后获取并按要求放置在指定路径。同时,确保各路径设置正确,若涉及多GPU训练,需保证GPU环境正常且符合代码要求。

相关推荐
深兰科技7 分钟前
廊坊市市长刘媛率队到访深兰科技,推动机器人制造基地与产业投资落地
人工智能·科技·机器人·scala·symfony·深兰科技·廊坊市市长刘媛
沫儿笙9 分钟前
发那科机器人在氩弧焊中搭配节气装置的优势
人工智能·机器人
m0_650108244 小时前
【论文精读】CMD:迈向高效视频生成的新范式
人工智能·论文精读·视频扩散模型·高效生成·内容 - 运动分解·latent 空间
电鱼智能的电小鱼4 小时前
基于电鱼 AI 工控机的智慧工地视频智能分析方案——边缘端AI检测,实现无人值守下的实时安全预警
网络·人工智能·嵌入式硬件·算法·安全·音视频
年年测试4 小时前
AI驱动的测试:用Dify工作流实现智能缺陷分析与分类
人工智能·分类·数据挖掘
唐兴通个人5 小时前
人工智能Deepseek医药AI培训师培训讲师唐兴通讲课课程纲要
大数据·人工智能
共绩算力6 小时前
Llama 4 Maverick Scout 多模态MoE新里程碑
人工智能·llama·共绩算力
DashVector7 小时前
向量检索服务 DashVector产品计费
数据库·数据仓库·人工智能·算法·向量检索
AI纪元故事会7 小时前
【计算机视觉目标检测算法对比:R-CNN、YOLO与SSD全面解析】
人工智能·算法·目标检测·计算机视觉
音视频牛哥7 小时前
从协议规范和使用场景探讨为什么SmartMediaKit没有支持DASH
人工智能·音视频·大牛直播sdk·dash·dash还是rtmp·dash还是rtsp·dash还是hls