复现无人机的项目,项目名称为Evidential Detection and Tracking Collaboration

项目名称为Evidential Detection and Tracking Collaboration,主要用于强大的反无人机系统,涉及新问题、基准和算法研究。下面介绍项目的复现步骤:

  1. 安装环境 :使用Anaconda创建并激活名为edtc的虚拟环境,Python版本为3.6,然后执行bash install_pytorch17.sh脚本安装相关依赖。
bash 复制代码
conda create -n edtc python=3.6
conda activate edtc
bash install_pytorch17.sh
  1. 训练YOLO检测器
    • 编辑数据集设置文件/path/to/EDTC/yolov5/data/antiuav.yaml,配置数据集路径等信息。
    • 进入/path/to/EDTC/yolov5目录,执行python train.py开始训练YOLO检测器。
bash 复制代码
cd /path/to/EDTC/yolov5
python train.py
  1. 训练跟踪分支
    • 运行python tracking/create_default_local_file.py --workspace_dir . --data_dir ./data --save_dir .命令设置项目路径,之后可通过编辑lib/train/admin/local.py(训练路径相关)、experiments/uavtrack/baseline.yaml(阶段1训练路径相关)、experiments/uavtrack_eh/baseline.yaml(阶段2训练路径相关)文件修改路径。
    • 阶段1训练:执行python tracking/train.py --script uavtrack --config baseline --save_dir . --mode multiple --nproc_per_node 8命令进行训练。
    • 阶段2训练:执行python tracking/train.py --script uavtrack_eh --config baseline --save_dir /PATH/TO/SAVE/UAVTRACK_EH --mode multiple --nproc_per_node 8 --stage1_model /STAGE1/MODEL/PATH命令进行训练,需指定阶段1模型的路径。
  2. 在AntiUAV600数据集上评估
    • 从[Models and Raw results](Google Driver)下载预训练模型。
    • 编辑lib/test/evaluation/local.py(测试路径相关)和experiments/uavtrack_eh/baseline.yaml(YOLO预训练模型路径,修改其中第133 - 134行)文件,设置相关路径。
    • 设置环境变量:
bash 复制代码
export PYTHONPATH=$PYTHONPATH:/path/to/EDTC
export PYTHONPATH=$PYTHONPATH:/path/to/EDTC/yolov5
复制代码
- 运行评估命令:`python tracking/test.py uavtrack_eh baseline --dataset antiuav --threads 32 --num_gpus 8 --params__model /path/to/UAVTrackEH.pth.tar --params__search_area_scale 4.55`。若要可视化跟踪结果,需编辑`/path/to/EDTC/lib/test/evaluation/environment.py`文件的第27行,将`self.show_result`设置为`True`。
- 执行`python tracking/evaluate_antiuav_performance.py`命令获取评估指标。

在复现过程中,若数据集尚未发布,需等待数据集发布后获取并按要求放置在指定路径。同时,确保各路径设置正确,若涉及多GPU训练,需保证GPU环境正常且符合代码要求。

相关推荐
阿杰学AI9 小时前
AI核心知识52——大语言模型之Model Quantization(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·模型量化·ai-native
Dev7z9 小时前
基于MATLAB的零件表面缺陷检测系统设计与实现
开发语言·人工智能·matlab
@小码农9 小时前
2025年全国青少年信息素养大赛 Gandi编程 小低组初赛真题
数据结构·人工智能·算法·蓝桥杯
阿杰学AI9 小时前
AI核心知识51——大语言模型之LLM Inference(简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·模型推理·大语言模型推理·llm inference
菜鸟‍9 小时前
【论文学习】Co-Seg:互提示引导的组织与细胞核分割协同学习
人工智能·学习·算法
张拭心9 小时前
程序员越想创业,越不要急着动手
前端·人工智能
久曲健的测试窝9 小时前
深度解构Testin XAgent:AI测试如何“副驾驶”进化为“全自动驾驶”
人工智能·机器学习·自动驾驶
nvvas9 小时前
Java AI开发入门指南
java·人工智能
阿正的梦工坊9 小时前
RLVE:通过自适应可验证环境扩展语言模型的强化学习
人工智能·深度学习·语言模型
是毛毛吧9 小时前
豆包风波后的破局者:智谱 AutoGLM 让“AI 手机”走向公共基建
人工智能·智能手机·开源·github·开源软件