Pandas DataFrame 入门教程

Pandas 是 Python 中用于数据操作和分析的强大工具。以下教程将涵盖 DataFrame 的常用函数和用法,帮助你快速上手。

1. 创建 DataFrame

1.1 使用字典创建 DataFrame

python 复制代码
import pandas as pd

# 使用字典创建 DataFrame
data = {
    '姓名': ['John', 'Alice', 'Bob'],
    '年龄': [28, 24, 22],
    '城市': ['纽约', '旧金山', '洛杉矶']
}
df = pd.DataFrame(data)

print(df)

输出结果:

text 复制代码
   姓名  年龄     城市
0   John    28     纽约
1  Alice    24   旧金山
2    Bob    22   洛杉矶

1.2 使用列表创建 DataFrame

python 复制代码
# 使用列表创建 DataFrame
data_list = [
    ['John', 28, '纽约'],
    ['Alice', 24, '旧金山'],
    ['Bob', 22, '洛杉矶']
]
df_list = pd.DataFrame(data_list, columns=['姓名', '年龄', '城市'])

print(df_list)

输出结果与上述相同。

1.3 使用 NumPy 数组创建 DataFrame

python 复制代码
import numpy as np

# 使用 NumPy 数组创建 DataFrame
array = np.array([
    ['John', 28, '纽约'],
    ['Alice', 24, '旧金山'],
    ['Bob', 22, '洛杉矶']
])
df_array = pd.DataFrame(array, columns=['姓名', '年龄', '城市'])

print(df_array)

输出结果与上述相同。

2. 访问和操作数据

2.1 访问行和列

  • 访问行 :使用 .loc[].iloc[]

    • .loc[] 根据标签访问。
    • .iloc[] 根据位置访问。
python 复制代码
# 访问第一行
print(df.loc[0])
# 访问第一列
print(df['姓名'])

2.2 添加和删除列

  • 添加列:直接赋值给新列名。
  • 删除列 :使用 .drop() 方法。
python 复制代码
# 添加新列
df['国家'] = '美国'

# 删除 '年龄' 列
df = df.drop('年龄', axis=1)

2.3 过滤数据

使用条件语句过滤数据。

python 复制代码
# 过滤年龄大于 25 的行(注意:此时年龄列已被删除)
# df['年龄'] = [28, 24, 22]  # 临时恢复年龄列以演示过滤
# filtered_df = df[df['年龄'] > 25]

3. 合并和连接 DataFrame

3.1 垂直合并

使用 .concat() 方法。

python 复制代码
df1 = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})
df2 = pd.DataFrame({'A': [5, 6], 'B': [7, 8]})
combined_df = pd.concat([df1, df2])

print(combined_df)

输出结果:

css 复制代码
text
   A  B
0  1  3
1  2  4
0  5  7
1  6  8

3.2 基于共同列的合并

使用 .merge() 方法。

python 复制代码
df1 = pd.DataFrame({'ID': [1, 2], '姓名': ['John', 'Alice']})
df2 = pd.DataFrame({'ID': [1, 2], '年龄': [28, 24]})
merged_df = pd.merge(df1, df2, on='ID')

print(merged_df)

输出结果:

text 复制代码
   ID  姓名  年龄
0   1   John    28
1   2  Alice    24

4. 应用自定义函数

使用 .apply() 方法应用自定义函数。

python 复制代码
def triple_value(x):
    return x * 3

# 将 '年龄' 列的值乘以 3(注意:此时年龄列已被删除)
# df['年龄'] = [28, 24, 22]  # 临时恢复年龄列以演示
# df['三倍年龄'] = df['年龄'].apply(triple_value)

5. 分组和聚合

使用 .groupby() 方法分组数据,然后应用聚合函数。

python 复制代码
# 按 '城市' 分组,计算每组的平均年龄(注意:此时年龄列已被删除)
# df['年龄'] = [28, 24, 22]  # 临时恢复年龄列以演示
# grouped_df = df.groupby('城市')['年龄'].mean()

6. 处理缺失值

使用 .fillna().dropna() 方法处理缺失值。

python 复制代码
# 用平均值填充缺失值(注意:此时年龄列已被删除)
# df['年龄'] = [28, 24, None]  # 临时添加缺失值以演示
# df['年龄'].fillna(df['年龄'].mean(), inplace=True)

7. 数据转换

使用 .pivot_table().melt() 方法转换数据格式。

python 复制代码
# 将宽格式转换为长格式
df_long = pd.melt(df, id_vars=['姓名'], value_vars=['年龄', '城市'])
# 注意:此处需要恢复年龄列以演示

这些函数和用法为你提供了一个基础的框架,以便在 Pandas 中高效地处理和分析数据。

相关推荐
想用offer打牌2 小时前
MCP (Model Context Protocol) 技术理解 - 第二篇
后端·aigc·mcp
passerby60613 小时前
完成前端时间处理的另一块版图
前端·github·web components
KYGALYX3 小时前
服务异步通信
开发语言·后端·微服务·ruby
掘了3 小时前
「2025 年终总结」在所有失去的人中,我最怀念我自己
前端·后端·年终总结
爬山算法4 小时前
Hibernate(90)如何在故障注入测试中使用Hibernate?
java·后端·hibernate
Moment4 小时前
富文本编辑器在 AI 时代为什么这么受欢迎
前端·javascript·后端
草梅友仁4 小时前
墨梅博客 1.4.0 发布与开源动态 | 2026 年第 6 周草梅周报
开源·github·ai编程
Cobyte5 小时前
AI全栈实战:使用 Python+LangChain+Vue3 构建一个 LLM 聊天应用
前端·后端·aigc
程序员侠客行6 小时前
Mybatis连接池实现及池化模式
java·后端·架构·mybatis
Honmaple6 小时前
QMD (Quarto Markdown) 搭建与使用指南
后端