基于传感器数据的城市空气质量预测与污染源分类


项目名称:基于传感器数据的城市空气质量预测与污染源分类

创新点:结合时间序列预测(回归)与污染源分类(多标签分类),使用公开API获取实时数据。


项目目标

  1. 预测未来6小时的空气质量指数(AQI)。
  2. 根据传感器数据判断可能的污染源类型(如工业排放、交通尾气、扬尘等)。

数据集来源

  • 数据获取 :通过开放API实时抓取(如 OpenAQAirNow 或国内公开的城市空气质量平台)。
  • 特征示例
    • PM2.5、PM10、SO2、NO2、CO、O3的实时浓度
    • 气象数据(温度、湿度、风速、风向)
    • 时间戳(小时级)
    • 地理位置(可选,需脱敏)

技术实现步骤

1. 环境准备
python 复制代码
# 安装依赖库(部分需根据API调整)
pip install requests pandas numpy scikit-learn xgboost plotly folium
2. 数据获取与清洗
python 复制代码
import requests
import pandas as pd

# 示例:从OpenAQ API获取数据(需替换为真实API密钥)
def fetch_air_quality(city="Beijing", days=30):
    url = f"https://api.openaq.org/v2/measurements?city={city}&parameter=pm25&date_from=2023-01-01&limit=1000"
    response = requests.get(url)
    data = response.json()
    
    # 转换为DataFrame并清洗
    df = pd.DataFrame([{
        'timestamp': item['date']['local'],
        'pm25': item['value'],
        'latitude': item['coordinates']['latitude'],
        'longitude': item['coordinates']['longitude']
    } for item in data['results']])
    
    # 处理缺失值
    df['pm25'].fillna(df['pm25'].median(), inplace=True)
    return df

air_data = fetch_air_quality()
print(air_data.head())
3. 特征工程
python 复制代码
# 时间特征提取
air_data['timestamp'] = pd.to_datetime(air_data['timestamp'])
air_data['hour'] = air_data['timestamp'].dt.hour
air_data['day_of_week'] = air_data['timestamp'].dt.dayofweek

# 添加滞后特征(用于时间序列预测)
air_data['pm25_lag6'] = air_data['pm25'].shift(6)  # 6小时前的PM2.5值
air_data.dropna(inplace=True)
4. 污染源分类(多标签分类)
python 复制代码
from sklearn.ensemble import RandomForestClassifier

# 假设根据专家规则生成标签(此处为示例,需结合实际数据)
def assign_pollution_source(row):
    if row['pm25'] > 150 and row['no2'] > 40:
        return 'industry'
    elif row['pm10'] > 100 and row['wind_speed'] < 2:
        return 'dust'
    else:
        return 'traffic'

# 加载真实数据后生成标签
# air_data['source'] = air_data.apply(assign_pollution_source, axis=1)

# 分类模型训练
X = air_data[['pm25', 'pm10', 'no2', 'so2', 'wind_speed']]
y = air_data['source']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

clf = RandomForestClassifier()
clf.fit(X_train, y_train)
print("Classification Accuracy:", clf.score(X_test, y_test))
5. AQI预测(时间序列回归)
python 复制代码
from xgboost import XGBRegressor
from sklearn.metrics import mean_absolute_error

# 特征与目标
features = ['pm25_lag6', 'hour', 'day_of_week', 'temperature', 'humidity']
target = 'pm25'

# 训练模型
reg = XGBRegressor()
reg.fit(X_train[features], y_train)
predictions = reg.predict(X_test[features])

print("MAE:", mean_absolute_error(y_test, predictions))
6. 可视化与部署
python 复制代码
# 使用Plotly动态展示预测结果
import plotly.express as px

fig = px.line(x=X_test['timestamp'], y=[y_test, predictions], 
              labels={'value': 'PM2.5', 'variable': 'Type'},
              title="Real vs Predicted PM2.5")
fig.show()

# 部署为简单API(Flask示例)
from flask import Flask, request, jsonify

app = Flask(__name__)
@app.route('/predict', methods=['POST'])
def predict():
    data = request.json
    prediction = reg.predict([data['features']])
    return jsonify({"predicted_aqi": prediction[0]})

if __name__ == '__main__':
    app.run()

项目亮点

  1. 数据原创性:通过API实时获取数据,避免使用常见静态数据集。
  2. 多任务学习:同时解决回归(预测AQI)和分类(污染源识别)问题。
  3. 实用价值:可直接部署为空气质量预警系统。
  4. 技术综合:涵盖数据抓取、时间序列处理、多模型融合。

扩展方向

  • 添加地理位置可视化(如用folium生成污染热力图)。
  • 结合LSTM模型提升时间序列预测精度。
  • 开发自动化的数据管道(如使用Apache Airflow定期更新数据)。
  • 增加异常检测模块识别传感器故障。

相关推荐
童话名剑28 分钟前
训练词嵌入(吴恩达深度学习笔记)
人工智能·深度学习·word2vec·词嵌入·负采样·嵌入矩阵·glove算法
桂花很香,旭很美1 小时前
智能体技术架构:从分类、选型到落地
人工智能·架构
HelloWorld__来都来了2 小时前
2026.1.30 本周学术科研热点TOP5
人工智能·科研
aihuangwu2 小时前
豆包图表怎么导出
人工智能·ai·deepseek·ds随心转
YMWM_2 小时前
深度学习中模型的推理和训练
人工智能·深度学习
中二病码农不会遇见C++学姐3 小时前
文明6-mod制作-游戏素材AI生成记录
人工智能·游戏
九尾狐ai3 小时前
从九尾狐AI案例拆解企业AI培训的技术实现与降本增效架构
人工智能
2501_948120153 小时前
基于RFID技术的固定资产管理软件系统的设计与开发
人工智能·区块链
(; ̄ェ ̄)。3 小时前
机器学习入门(十五)集成学习,Bagging,Boosting,Voting,Stacking,随机森林,Adaboost
人工智能·机器学习·集成学习
杀生丸学AI3 小时前
【物理重建】PPISP :辐射场重建中光度变化的物理合理补偿与控制
人工智能·大模型·aigc·三维重建·世界模型·逆渲染