基于传感器数据的城市空气质量预测与污染源分类


项目名称:基于传感器数据的城市空气质量预测与污染源分类

创新点:结合时间序列预测(回归)与污染源分类(多标签分类),使用公开API获取实时数据。


项目目标

  1. 预测未来6小时的空气质量指数(AQI)。
  2. 根据传感器数据判断可能的污染源类型(如工业排放、交通尾气、扬尘等)。

数据集来源

  • 数据获取 :通过开放API实时抓取(如 OpenAQAirNow 或国内公开的城市空气质量平台)。
  • 特征示例
    • PM2.5、PM10、SO2、NO2、CO、O3的实时浓度
    • 气象数据(温度、湿度、风速、风向)
    • 时间戳(小时级)
    • 地理位置(可选,需脱敏)

技术实现步骤

1. 环境准备
python 复制代码
# 安装依赖库(部分需根据API调整)
pip install requests pandas numpy scikit-learn xgboost plotly folium
2. 数据获取与清洗
python 复制代码
import requests
import pandas as pd

# 示例:从OpenAQ API获取数据(需替换为真实API密钥)
def fetch_air_quality(city="Beijing", days=30):
    url = f"https://api.openaq.org/v2/measurements?city={city}&parameter=pm25&date_from=2023-01-01&limit=1000"
    response = requests.get(url)
    data = response.json()
    
    # 转换为DataFrame并清洗
    df = pd.DataFrame([{
        'timestamp': item['date']['local'],
        'pm25': item['value'],
        'latitude': item['coordinates']['latitude'],
        'longitude': item['coordinates']['longitude']
    } for item in data['results']])
    
    # 处理缺失值
    df['pm25'].fillna(df['pm25'].median(), inplace=True)
    return df

air_data = fetch_air_quality()
print(air_data.head())
3. 特征工程
python 复制代码
# 时间特征提取
air_data['timestamp'] = pd.to_datetime(air_data['timestamp'])
air_data['hour'] = air_data['timestamp'].dt.hour
air_data['day_of_week'] = air_data['timestamp'].dt.dayofweek

# 添加滞后特征(用于时间序列预测)
air_data['pm25_lag6'] = air_data['pm25'].shift(6)  # 6小时前的PM2.5值
air_data.dropna(inplace=True)
4. 污染源分类(多标签分类)
python 复制代码
from sklearn.ensemble import RandomForestClassifier

# 假设根据专家规则生成标签(此处为示例,需结合实际数据)
def assign_pollution_source(row):
    if row['pm25'] > 150 and row['no2'] > 40:
        return 'industry'
    elif row['pm10'] > 100 and row['wind_speed'] < 2:
        return 'dust'
    else:
        return 'traffic'

# 加载真实数据后生成标签
# air_data['source'] = air_data.apply(assign_pollution_source, axis=1)

# 分类模型训练
X = air_data[['pm25', 'pm10', 'no2', 'so2', 'wind_speed']]
y = air_data['source']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

clf = RandomForestClassifier()
clf.fit(X_train, y_train)
print("Classification Accuracy:", clf.score(X_test, y_test))
5. AQI预测(时间序列回归)
python 复制代码
from xgboost import XGBRegressor
from sklearn.metrics import mean_absolute_error

# 特征与目标
features = ['pm25_lag6', 'hour', 'day_of_week', 'temperature', 'humidity']
target = 'pm25'

# 训练模型
reg = XGBRegressor()
reg.fit(X_train[features], y_train)
predictions = reg.predict(X_test[features])

print("MAE:", mean_absolute_error(y_test, predictions))
6. 可视化与部署
python 复制代码
# 使用Plotly动态展示预测结果
import plotly.express as px

fig = px.line(x=X_test['timestamp'], y=[y_test, predictions], 
              labels={'value': 'PM2.5', 'variable': 'Type'},
              title="Real vs Predicted PM2.5")
fig.show()

# 部署为简单API(Flask示例)
from flask import Flask, request, jsonify

app = Flask(__name__)
@app.route('/predict', methods=['POST'])
def predict():
    data = request.json
    prediction = reg.predict([data['features']])
    return jsonify({"predicted_aqi": prediction[0]})

if __name__ == '__main__':
    app.run()

项目亮点

  1. 数据原创性:通过API实时获取数据,避免使用常见静态数据集。
  2. 多任务学习:同时解决回归(预测AQI)和分类(污染源识别)问题。
  3. 实用价值:可直接部署为空气质量预警系统。
  4. 技术综合:涵盖数据抓取、时间序列处理、多模型融合。

扩展方向

  • 添加地理位置可视化(如用folium生成污染热力图)。
  • 结合LSTM模型提升时间序列预测精度。
  • 开发自动化的数据管道(如使用Apache Airflow定期更新数据)。
  • 增加异常检测模块识别传感器故障。

相关推荐
pen-ai10 分钟前
【NLP】 3. Distributional Similarity in NLP(分布式相似性)
人工智能·分布式·自然语言处理
掘金詹姆斯15 分钟前
🚀IDEA+DeepSeek双剑合璧:3倍编码速度的隐藏技巧大公开!
人工智能
起个破名想半天了25 分钟前
计算机视觉cv2入门之边缘检测
人工智能·计算机视觉·opencv-python
dundunmm27 分钟前
对比学习(Contrastive Learning)
人工智能·深度学习·学习·算法·数据挖掘·对比学习
mirrornan34 分钟前
AI建模智能生成:从2D到3D,AI只需一步!
人工智能·3d·ai·3d模型·三维建模·ai建模
CareyWYR36 分钟前
每周AI论文速递(250310-250314)
人工智能
Fansv58738 分钟前
【2025最新】深度学习框架PyTorch——从入门到精通(1)下载与安装
人工智能·pytorch·深度学习
程序员JerrySUN1 小时前
TensorFlow 与 TensorFlow Lite:核心解析与层应用
人工智能·python·tensorflow
鸭鸭鸭进京赶烤1 小时前
传感云揭秘:边缘计算的革新力量
人工智能·数学建模·设计模式·边缘计算·设计语言·统一建模语言·机械键盘
yczykjyxgs1 小时前
边缘计算与 PCDN 的融合:未来网络架构新趋势
网络·人工智能·边缘计算