LLaMA-Factory多机多卡训练实战

https://www.dong-blog.fun/post/1999

参考资料:https://llamafactory.readthedocs.io/zh-cn/latest/advanced/distributed.html

以训练qwen2.5vl 7b 为例子。

创建空间

创建数据集

如果数据集文件非常多,可以选择上tar.gz包,然后再数据集页面面,点击终端进入到/mnt/data目录。执行 tar-zxfxxx.tar.gz 命令解压,请解压到当前目录(/mnt/data目录是挂载盘目录)

上传模型

制作一个训练镜像

启动镜像,进入容器中设置数据集和平台匹配。

bash 复制代码
docker run -it --rm --gpus  '"device=1,2,3"' --shm-size 16G kevinchina/deeplearning:llamafactory20250311-3 bash
bash 复制代码
如果镜像用的是ubuntu
要执行一下命令,安装libibverbs1才能使用rdma网卡,加速训练
sudo apt-get update
sudo apt-get install libibverbs1 -y

这个镜像里已经安装:

bash 复制代码
root@260e21033aae:/app# apt-get install libibverbs1 -y
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
libibverbs1 is already the newest version (39.0-1).
0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

在data里增加训练json数据集,/app/examples/train_lora中增加训练yaml文件。

docker commit 这个容器,将此镜像传到hub。

创建任务

为了多机多卡,需要在每台机器启动这个:

bash 复制代码
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/qwen2vl_lora_sft_zizhi.yaml

FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/qwen2vl_lora_sft_zizhi.yaml

训练指令写为下面这样,那三个变量由环境自动指定:

bash 复制代码
FORCE_TORCHRUN=1 \
NNODES=2 \
NODE_RANK=${RANK} \
MASTER_ADDR=${MASTER_ADDR} \
MASTER_PORT=${MASTER_PORT} \
llamafactory-cli train examples/train_lora/qwen2vl_lora_sft_zizhi.yaml

此外,为了为rDMA,需要设置这三个环境变量:

复制代码
CUDA_DEVICE_MAX_CONNECTIONS=1
NCCL_DEBUG=INFO
NCCL_IB_DISABLE=0
相关推荐
大傻^1 天前
大模型基于llama.cpp量化详解
llama·大模型量化
大傻^2 天前
大模型微调-基于llama-factory详解
llama·模型微调
空中楼阁,梦幻泡影2 天前
主流4 大模型(GPT、LLaMA、DeepSeek、QWE)的训练与推理算力估算实例详细数据
人工智能·gpt·llama
蓝田生玉1232 天前
LLaMA论文阅读笔记
论文阅读·笔记·llama
木卫二号Coding2 天前
第七十七篇-V100+llama-cpp-python-server+Qwen3-30B+GGUF
开发语言·python·llama
木卫二号Coding2 天前
第七十六篇-V100+llama-cpp-python+Qwen3-30B+GGUF
开发语言·python·llama
姚华军3 天前
在本地(Windows环境)部署LLaMa-Factory,进行模型微调步骤!!!
windows·ai·llama·llama-factory
Honmaple3 天前
openclaw使用llama.cpp 本地大模型部署教程
llama
love530love3 天前
Windows 11 配置 CUDA 版 llama.cpp 并实现系统全局调用(GGUF 模型本地快速聊天)
人工智能·windows·大模型·llama·llama.cpp·gguf·cuda 加速
feasibility.3 天前
多模态模型Qwen3-VL在Llama-Factory中断LoRA微调训练+测试+导出+部署全流程--以具身智能数据集open-eqa为例
人工智能·python·大模型·nlp·llama·多模态·具身智能