LLaMA-Factory多机多卡训练实战

https://www.dong-blog.fun/post/1999

参考资料:https://llamafactory.readthedocs.io/zh-cn/latest/advanced/distributed.html

以训练qwen2.5vl 7b 为例子。

创建空间

创建数据集

如果数据集文件非常多,可以选择上tar.gz包,然后再数据集页面面,点击终端进入到/mnt/data目录。执行 tar-zxfxxx.tar.gz 命令解压,请解压到当前目录(/mnt/data目录是挂载盘目录)

上传模型

制作一个训练镜像

启动镜像,进入容器中设置数据集和平台匹配。

bash 复制代码
docker run -it --rm --gpus  '"device=1,2,3"' --shm-size 16G kevinchina/deeplearning:llamafactory20250311-3 bash
bash 复制代码
如果镜像用的是ubuntu
要执行一下命令,安装libibverbs1才能使用rdma网卡,加速训练
sudo apt-get update
sudo apt-get install libibverbs1 -y

这个镜像里已经安装:

bash 复制代码
root@260e21033aae:/app# apt-get install libibverbs1 -y
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
libibverbs1 is already the newest version (39.0-1).
0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

在data里增加训练json数据集,/app/examples/train_lora中增加训练yaml文件。

docker commit 这个容器,将此镜像传到hub。

创建任务

为了多机多卡,需要在每台机器启动这个:

bash 复制代码
FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/qwen2vl_lora_sft_zizhi.yaml

FORCE_TORCHRUN=1 NNODES=2 NODE_RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/qwen2vl_lora_sft_zizhi.yaml

训练指令写为下面这样,那三个变量由环境自动指定:

bash 复制代码
FORCE_TORCHRUN=1 \
NNODES=2 \
NODE_RANK=${RANK} \
MASTER_ADDR=${MASTER_ADDR} \
MASTER_PORT=${MASTER_PORT} \
llamafactory-cli train examples/train_lora/qwen2vl_lora_sft_zizhi.yaml

此外,为了为rDMA,需要设置这三个环境变量:

复制代码
CUDA_DEVICE_MAX_CONNECTIONS=1
NCCL_DEBUG=INFO
NCCL_IB_DISABLE=0
相关推荐
try2find3 小时前
安装llama-cpp-python踩坑记
开发语言·python·llama
西西弗Sisyphus8 小时前
LLaMA-Factory 单卡后训练微调Qwen3完整脚本
微调·llama·llama-factory·后训练
顾道长生'8 小时前
(Arxiv-2024)自回归模型优于扩散:Llama用于可扩展的图像生成
计算机视觉·数据挖掘·llama·自回归模型·多模态生成与理解
Zhijun.li@Studio10 天前
【LLaMA-Factory 实战系列】二、WebUI 篇 - Qwen2.5-VL 多模态模型 LoRA 微调保姆级教程
人工智能·自然语言处理·llama·多模态大模型
1213410 天前
LLM:重构数字世界的“智能操作系统”
gpt·aigc·ai编程·llama·gpu算力
冷雨夜中漫步18 天前
Java中如何使用lambda表达式分类groupby
java·开发语言·windows·llama
扫地的小何尚20 天前
全新NVIDIA Llama Nemotron Nano视觉语言模型在OCR基准测试中准确率夺冠
c++·人工智能·语言模型·机器人·ocr·llama·gpu
CFAteam20 天前
DeepSeek AI功能演示:如何生成Verilog脚本
人工智能·ai·fpga开发·llama
Tadas-Gao22 天前
从碳基羊驼到硅基LLaMA:开源大模型家族的生物隐喻与技术进化全景
人工智能·机器学习·大模型·llm·llama
Run_Clover22 天前
llama-factory微调大模型环境配置避坑总结
llama