基于Windows11的Xinference安装方法简介

基于Windows11的Xinference安装方法简介

快速启动命令:

conda activate D:\cwgis_AI\xinference

xinference-local --host 192.168.1.82 --port 9997

bash 复制代码
conda activate D:\cwgis_AI\xinference
xinference-local --host 192.168.1.82 --port 9997

http://192.168.1.82:9997

http://127.0.0.1:9997

conda deactivate

bash 复制代码
conda deactivate

一、基础安装
conda安装

下载anaconda 2022.10 window-x86-x64.exe
https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/?C=M&O=A

设置系统Path

bash 复制代码
path+=
D:\ProgramData\Anaconda3
D:\ProgramData\Anaconda3\Scripts
D:\ProgramData\Anaconda3\Library\bin
D:\ProgramData\Anaconda3\Library\mingw-w64\bin

查看版本:

conda --version

python

bash 复制代码
conda --version
python

cuda安装

安装cuda和cudnn环境前:先要安装和升级显卡驱动程序

注意查看cuda或cudnn开发者库有没有安装,其显著特征就是:

bash 复制代码
有没有目录路径 C:\Program Files\NVIDIA GPU Computing Toolkit

cuda下载地址:https://developer.nvidia.com/cuda-toolkit-archive

我选择的是版本11.7版本

nvcc -V #测试是否安装成功

bash 复制代码
C:\Users\Administrator>nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2022 NVIDIA Corporation
Built on Wed_Jun__8_16:59:34_Pacific_Daylight_Time_2022
Cuda compilation tools, release 11.7, V11.7.99
Build cuda_11.7.r11.7/compiler.31442593_0

检查该计算机适配的CUDA版本:向下兼容

方法一:命令行输入nvidia-smi

bash 复制代码
NVIDIA-SMI 572.70                 Driver Version: 572.70         CUDA Version: 12.8
NVIDIA GeForce GTX 1080           832MiB /   8192MiB

CUDNN的安装

下载地址:
https://developer.nvidia.com/rdp/cudnn-download

必须注册后下载cuda11版本 8.9的window版本

cudnn-windows-x86_64-8.9.4.25_cuda11-archive.zip

(就是将解压后得到的的bin ,include 和lib文件夹分别复制到cuda安装路径下与cuda的bin ,include 和lib文件夹合并)

国内镜像源配置

通过win+R输入cmd进入命令行,通过输入下面命令配置为清华源:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/

二、xinference安装

先创建python环境

bash 复制代码
conda env list
conda remove -p D:\cwgis_AI\xinference --all

创建独立python空间

D:\cwgis_AI\xinference>

bash 复制代码
conda create --prefix=D:\cwgis_AI\xinference  python=3.10

激活环境

D:\cwgis_AI\xinference>

bash 复制代码
conda activate D:\cwgis_AI\xinference

安装基础库

bash 复制代码
安装C++ MSVC V143 Build Tool工具 (C++桌面开发) vs2019/2022安装工具中添加/修改
conda config --add channels conda-forge
python -m pip install --upgrade pip
pip install wheel  
pip install --use-pep517 vllm

安装xinference

bash 复制代码
pip install "xinference[transformers]" -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install sentence-transformers

更改Xinference下载模型存储目录方法

启动前添加系统变量XINFERENCE_HOME

等于下载模型另存为目录地址:

D:\cwgis_AI\XINFERENCE_HOME

bash 复制代码
启动前添加系统变量  XINFERENCE_HOME
D:\cwgis_AI\XINFERENCE_HOME

启动xinference服务 Xinference启动

运行以下命令启动Xinference:

(D:\cwgis_AI\xinference) D:\cwgis_AI\xinference>

xinference-local --host 192.168.1.82 --port 9997

bash 复制代码
xinference-local --host 192.168.1.82 --port 9997
xinference-local --host 127.0.0.1 --port 9997

查看运行界面:

bash 复制代码
http://192.168.1.82:9997
http://127.0.0.1:9997

Xinference主界面

dify中添加Xinference中bce-reranker-base_v1模型方法

本blog地址:https://blog.csdn.net/hsg77

相关推荐
AndrewHZ1 小时前
【图像处理基石】什么是油画感?
图像处理·人工智能·算法·图像压缩·视频处理·超分辨率·去噪算法
Robot2512 小时前
「华为」人形机器人赛道投资首秀!
大数据·人工智能·科技·microsoft·华为·机器人
J先生x2 小时前
【IP101】图像处理进阶:从直方图均衡化到伽马变换,全面掌握图像增强技术
图像处理·人工智能·学习·算法·计算机视觉
Narutolxy4 小时前
大模型数据分析破局之路20250512
人工智能·chatgpt·数据分析
浊酒南街4 小时前
TensorFlow中数据集的创建
人工智能·tensorflow
2301_787552876 小时前
console-chat-gpt开源程序是用于 AI Chat API 的 Python CLI
人工智能·python·gpt·开源·自动化
layneyao6 小时前
AI与自然语言处理(NLP):从BERT到GPT的演进
人工智能·自然语言处理·bert
jndingxin7 小时前
OpenCV 的 CUDA 模块中用于将多个单通道的 GpuMat 图像合并成一个多通道的图像 函数cv::cuda::merge
人工智能·opencv·计算机视觉
格林威7 小时前
Baumer工业相机堡盟工业相机的工业视觉中为什么偏爱“黑白相机”
开发语言·c++·人工智能·数码相机·计算机视觉
灬0灬灬0灬8 小时前
深度学习---常用优化器
人工智能·深度学习