SQL 窗口函数

窗口函数(Window Function)是SQL中用于在查询结果的某个"窗口"或"子集"上执行计算的功能。它们通常与OVER()子句一起使用,允许在不改变行数的情况下对数据进行聚合、排序或分析。窗口函数不会像GROUP BY那样将多行合并为一行,而是保留原始行的同时进行计算。

常见的窗口函数包括以下几类:

1. 聚合窗口函数

在窗口内执行聚合操作,例如:

  • SUM():计算窗口内某列的总和。

  • AVG():计算窗口内某列的平均值。

  • MIN():计算窗口内某列的最小值。

  • MAX():计算窗口内某列的最大值。

  • COUNT():计算窗口内的行数。

sql 复制代码
SELECT 
    employee_id, 
    salary, 
    SUM(salary) OVER (PARTITION BY department_id) AS department_total_salary
FROM employees;

这会计算每个部门的工资总和,同时保留每个员工的原始行


2. 排序窗口函数

根据窗口内的排序规则为每行分配一个值,例如:

  • ROW_NUMBER():为窗口内的每一行分配一个唯一的行号。

  • RANK():为窗口内的每一行分配排名,相同值会有相同的排名,后续排名会跳过。

  • DENSE_RANK():与RANK()类似,但不会跳过后续排名。

  • NTILE(n):将窗口内的行分成n个桶,并为每行分配桶号。

sql 复制代码
SELECT 
    employee_id, 
    salary, 
    RANK() OVER (ORDER BY salary DESC) AS salary_rank
FROM employees;

这会根据工资从高到低为员工分配排名


3. 分析窗口函数

用于计算窗口内的相对值或变化,例如:

  • LAG():获取窗口中当前行之前的某一行的值。

  • LEAD():获取窗口中当前行之后的某一行的值。

  • FIRST_VALUE():获取窗口内第一行的值。

  • LAST_VALUE():获取窗口内最后一行的值。

sql 复制代码
SELECT 
    employee_id, 
    salary, 
    LAG(salary, 1) OVER (ORDER BY salary) AS previous_salary
FROM employees;

这会获取当前行前一行(按工资排序)的工资值


4. 窗口定义

窗口函数的核心是OVER()子句,它定义了窗口的范围。常见的窗口定义方式包括:

  • PARTITION BY:将数据分组,窗口函数在每个分组内独立计算。

  • ORDER BY:指定窗口内的排序规则。

  • ROWSRANGE:定义窗口的物理或逻辑范围(例如前N行、后N行、当前行到末尾等)

sql 复制代码
SELECT 
    employee_id, 
    salary, 
    AVG(salary) OVER (PARTITION BY department_id ORDER BY hire_date ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS moving_avg
FROM employees;

这会计算每个部门中,按入职日期排序后,当前行及其前后一行的工资平均值


应用场景

窗口函数常用于以下场景:

  • 计算累计值(如累计销售额)。

  • 计算移动平均值(如过去3个月的平均值)。

  • 排名和分组分析(如部门内工资排名)。

  • 比较当前行与前一行或后一行的值(如环比分析)

sql 复制代码
SELECT 
    employee_id, 
    department_id, 
    salary, 
    SUM(salary) OVER (PARTITION BY department_id) AS dept_total,
    AVG(salary) OVER (PARTITION BY department_id) AS dept_avg,
    RANK() OVER (PARTITION BY department_id ORDER BY salary DESC) AS dept_rank,
    LAG(salary, 1) OVER (ORDER BY hire_date) AS prev_salary
FROM employees;

这个查询会返回每个员工的工资、部门总工资、部门平均工资、部门内工资排名以及前一个员工的工资

窗口函数是SQL中非常强大的工具,能够在不改变数据粒度的情况下进行复杂的分析和计算

相关推荐
不剪发的Tony老师13 分钟前
MySQL 9.5创新版发布,有哪些新功能?
数据库·mysql
布朗克1681 小时前
MySQL 及 SQL 注入详细说明
数据库·sql·mysql·1024程序员节
武子康1 小时前
Java-154 深入浅出 MongoDB 用Java访问 MongoDB 数据库 从环境搭建到CRUD完整示例
java·数据库·分布式·sql·mongodb·性能优化·nosql
Austindatabases2 小时前
DBA 从“修电脑的” 到 上演一套 “数据治理” 大戏 --- 维护DBA生存空间,体现个体价值
数据库·dba
LB21122 小时前
Redis黑马点评 day01
数据库·redis·缓存
白小筠2 小时前
创建Django项目
数据库·django·sqlite
-曾牛2 小时前
深入浅出 SQL 注入
网络·sql·安全·网络安全·渗透测试·sql注入·盲注
wudl55663 小时前
Flink 1.20 自定义SQL连接器实战
大数据·sql·flink
扑克中的黑桃A4 小时前
金仓多模数据库平替MongoDB的电子证照国产化实践——从2TB数据迁移到1600+并发支撑
数据库
计算机毕业设计小帅4 小时前
【2026计算机毕业设计】基于Django的社区婴幼儿预防接种系统
数据库·django·课程设计