【MySQL基础】聚合函数从基础使用到高级分组过滤

作为运维工程师,熟练掌握聚合函数是进行数据分析和报表生成的基础技能。本文将系统讲解MySQL聚合函数的使用方法,包含大量实用示例和运维场景中的应用技巧。

1 常用聚合函数详解

1.1 基础聚合函数

1.1.1 SUM():求和计算

复制代码
# 计算所有员工的工资总和 
select sum(salary) from emp; 
# 计算销售部门的加班费总额 
select sum(overtime_pay) from test where department = 'sales';

1.1.2 AVG():平均值

复制代码
# 计算公司平均薪资 
select avg(salary) from epm; 
# 计算技术部平均工龄(保留2位小数) 
select round(avg(years_of_service), 2) from epm where department = 'technology';

1.1.3 MAX()/MIN():极值查询

复制代码
# 查询最高和最低工资 
select max(salary), min(salary) from epm; 
# 找出最近和最早上架的商品 
select max(create_time), min(create_time) from products;

1.1.4 COUNT():计数统计

复制代码
# 统计员工总数 
select count(*) from epm; 
# 统计有邮箱的员工数量(不统计NULL) 
select count(email) from epm; 
# 统计不同部门的数量 
select count(distinct department) from epm;

1.2 运维场景应用案例

示例:监控表空间使用

复制代码
# 统计各数据库占用空间(MB)
select table_schema, 
       round(sum(data_length)/1024/1024, 2) as size_mb
from information_schema.tables 
group by table_schema;

2 聚合函数与GROUP BY分组

2.1 基础分组统计

复制代码
# 按部门统计员工
select department, 
       count(*) as employee_count,
       avg(salary) as avg_salary
from epm
group by department;

# 商品分类统计
select category,
       count(*) as product_count,
       min(price) as min_price,
       max(price) as max_price,
       avg(price) as avg_price
from products
group by category;

2.2 多列分组

复制代码
# 按部门和职位统计
select department, 
       job_title,
       count(*) as headcount,
       sum(salary) as total_salary
from epm
group by department, job_title;

2.3. 运维实战案例

复制代码
# 分析慢查询日志,按查询类型统计平均执行时间
select query_type,
       count(*) as query_count,
       avg(execution_time) as avg_time_ms
from slow_query_log
where log_date = curdate()
group by query_type;

3 HAVING子句过滤聚合结果

3.1 基础用法

复制代码
# 筛选销售额大于1000的部门
select department, 
       sum(sales) as total_sales
from sales_records
group by department
having sum(sales) > 1000;

3.2 复杂过滤条件

复制代码
# 筛选平均工资高于公司平均的部门
select department,
       avg(salary) as dept_avg_salary
from epm
group by department
having avg(salary) > (select avg(salary) from epm);

3.3 运维监控应用

复制代码
# 找出表空间超过1GB的数据库
select table_schema,
       round(sum(data_length)/1024/1024, 2) as size_mb
from information_schema.tables
group by table_schema
having size_mb > 1024
order by size_mb desc;

4 高级技巧与性能优化

4.1 WITH ROLLUP小计功能

复制代码
select department,
       job_title,
       count(*) as headcount
from epm
group by department, job_title with rollup;

4.2 聚合函数性能优化

  • 为GROUP BY列添加索引

    alter table epm add index idx_department (department);

  • 避免在WHERE中使用聚合函数

    错误写法

    select department, avg(salary)
    from epm
    where avg(salary) > 5000 # 这里会报错
    group by department;

    正确写法

    select department, avg(salary)
    from epm
    group by department
    having avg(salary) > 5000;

4.3 聚合函数执行计划分析

复制代码
explain 
select department, count(*) 
from epm 
group by department;

5 常见问题解决方案

5.1 问题1:GROUP BY与SELECT列不一致

复制代码
# 错误示例
select employee_name, department, count(*)
from epm
group by department;

# 正确写法
select department, count(*)
from epm
group by department;

# 或者包含所有非聚合列
select employee_name, department, count(*) over (partition by department)
from epm;

5.2 问题2:NULL值处理

复制代码
# COUNT(列名)会忽略NULL,COUNT(*)不会
select count(commission), count(*) 
from epm 
where department = 'sales';

# 使用IFNULL处理
select department, avg(ifnull(commission, 0)) 
from epm
group by department;

6 总结

希望这篇指南能帮助您更好了解聚合函数以及更好地在MySQL运维工作中运用聚合函数!

相关推荐
长征coder1 分钟前
AWS MySQL 读写分离配置指南
mysql·云计算·aws
醇醛酸醚酮酯16 分钟前
Qt项目锻炼——TODO清单(二)
开发语言·数据库·qt
ladymorgana36 分钟前
【docker】修改 MySQL 密码后 Navicat 仍能用原密码连接
mysql·adb·docker
PanZonghui40 分钟前
Centos项目部署之安装数据库MySQL8
linux·后端·mysql
GreatSQL社区1 小时前
用systemd管理GreatSQL服务详解
数据库·mysql·greatsql
掘根1 小时前
【MySQL进阶】错误日志,二进制日志,mysql系统库
数据库·mysql
weixin_438335401 小时前
基础知识:mysql-connector-j依赖
数据库·mysql
小明铭同学1 小时前
MySQL 八股文【持续更新ing】
数据库·mysql
Mr_Xuhhh1 小时前
信号与槽的总结
java·开发语言·数据库·c++·qt·系统架构
Fireworkitte1 小时前
Redis 源码 tar 包安装 Redis 哨兵模式(Sentinel)
数据库·redis·sentinel