聊聊Spring AI的PgVectorStore

本文主要研究一下Spring AI的PgVectorStore

示例

pom.xml

xml 复制代码
		<dependency>
			<groupId>org.springframework.ai</groupId>
			<artifactId>spring-ai-starter-vector-store-pgvector</artifactId>
		</dependency>

pgvector

css 复制代码
docker run -it --rm --name postgres -p 5432:5432 -e POSTGRES_USER=postgres -e POSTGRES_PASSWORD=postgres pgvector/pgvector:pg16

配置

yaml 复制代码
spring:
  datasource:
    name: pgvector
    driverClassName: org.postgresql.Driver
    url: jdbc:postgresql://localhost:5432/postgres?currentSchema=public&connectTimeout=60&socketTimeout=60
    username: postgres
    password: postgres
  ai:
    vectorstore:
      type: pgvector
      pgvector:
        initialize-schema: true
        index-type: HNSW
        distance-type: COSINE_DISTANCE
        dimensions: 1024
        max-document-batch-size: 10000
        schema-name: public
        table-name: vector_store

设置initialize-schema为true,默认会执行如下初始化脚本:

sql 复制代码
CREATE EXTENSION IF NOT EXISTS vector;
CREATE EXTENSION IF NOT EXISTS hstore;
CREATE EXTENSION IF NOT EXISTS "uuid-ossp";

CREATE TABLE IF NOT EXISTS vector_store (
	id uuid DEFAULT uuid_generate_v4() PRIMARY KEY,
	content text,
	metadata json,
	embedding vector(1536) // 1536 is the default embedding dimension
);

CREATE INDEX ON vector_store USING HNSW (embedding vector_cosine_ops);

脚本源码: org/springframework/ai/vectorstore/pgvector/PgVectorStore.java

kotlin 复制代码
	public void afterPropertiesSet() {

		logger.info("Initializing PGVectorStore schema for table: {} in schema: {}", this.getVectorTableName(),
				this.getSchemaName());

		logger.info("vectorTableValidationsEnabled {}", this.schemaValidation);

		if (this.schemaValidation) {
			this.schemaValidator.validateTableSchema(this.getSchemaName(), this.getVectorTableName());
		}

		if (!this.initializeSchema) {
			logger.debug("Skipping the schema initialization for the table: {}", this.getFullyQualifiedTableName());
			return;
		}

		// Enable the PGVector, JSONB and UUID support.
		this.jdbcTemplate.execute("CREATE EXTENSION IF NOT EXISTS vector");
		this.jdbcTemplate.execute("CREATE EXTENSION IF NOT EXISTS hstore");

		if (this.idType == PgIdType.UUID) {
			this.jdbcTemplate.execute("CREATE EXTENSION IF NOT EXISTS \"uuid-ossp\"");
		}

		this.jdbcTemplate.execute(String.format("CREATE SCHEMA IF NOT EXISTS %s", this.getSchemaName()));

		// Remove existing VectorStoreTable
		if (this.removeExistingVectorStoreTable) {
			this.jdbcTemplate.execute(String.format("DROP TABLE IF EXISTS %s", this.getFullyQualifiedTableName()));
		}

		this.jdbcTemplate.execute(String.format("""
				CREATE TABLE IF NOT EXISTS %s (
					id %s PRIMARY KEY,
					content text,
					metadata json,
					embedding vector(%d)
				)
				""", this.getFullyQualifiedTableName(), this.getColumnTypeName(), this.embeddingDimensions()));

		if (this.createIndexMethod != PgIndexType.NONE) {
			this.jdbcTemplate.execute(String.format("""
					CREATE INDEX IF NOT EXISTS %s ON %s USING %s (embedding %s)
					""", this.getVectorIndexName(), this.getFullyQualifiedTableName(), this.createIndexMethod,
					this.getDistanceType().index));
		}
	}

代码

less 复制代码
    @Test
    public void testAddAndSearch() {
        List<Document> documents = List.of(
                new Document("Spring AI rocks!! Spring AI rocks!! Spring AI rocks!! Spring AI rocks!! Spring AI rocks!!", Map.of("meta1", "meta1")),
                new Document("The World is Big and Salvation Lurks Around the Corner"),
                new Document("You walk forward facing the past and you turn back toward the future.", Map.of("meta2", "meta2")));

        // Add the documents to Milvus Vector Store
        pgVectorStore.add(documents);

        // Retrieve documents similar to a query
        List<Document> results = this.pgVectorStore.similaritySearch(SearchRequest.builder().query("Spring").topK(5).build());
        log.info("results:{}", JSON.toJSONString(results));
    }

输出如下:

swift 复制代码
results:[{"contentFormatter":{"excludedEmbedMetadataKeys":[],"excludedInferenceMetadataKeys":[],"metadataSeparator":"\n","metadataTemplate":"{key}: {value}","textTemplate":"{metadata_string}\n\n{content}"},"formattedContent":"distance: 0.43509135\nmeta1: meta1\n\nSpring AI rocks!! Spring AI rocks!! Spring AI rocks!! Spring AI rocks!! Spring AI rocks!!","id":"9dbce9af-0451-4bdb-8f03-1f8b8c4d696f","metadata":{"distance":0.43509135,"meta1":"meta1"},"score":0.5649086534976959,"text":"Spring AI rocks!! Spring AI rocks!! Spring AI rocks!! Spring AI rocks!! Spring AI rocks!!"},{"contentFormatter":{"$ref":"$[0].contentFormatter"},"formattedContent":"distance: 0.57093126\n\nThe World is Big and Salvation Lurks Around the Corner","id":"92a45683-11fc-48b7-8676-dcca3b518dd4","metadata":{"distance":0.57093126},"score":0.42906874418258667,"text":"The World is Big and Salvation Lurks Around the Corner"},{"contentFormatter":{"$ref":"$[0].contentFormatter"},"formattedContent":"distance: 0.5936024\nmeta2: meta2\n\nYou walk forward facing the past and you turn back toward the future.","id":"298f6565-bcc7-4cbc-8552-4c0e2d021dbf","metadata":{"distance":0.5936024,"meta2":"meta2"},"score":0.40639758110046387,"text":"You walk forward facing the past and you turn back toward the future."}]

源码

PgVectorStoreAutoConfiguration

org/springframework/ai/vectorstore/pgvector/autoconfigure/PgVectorStoreAutoConfiguration.java

less 复制代码
@AutoConfiguration(after = JdbcTemplateAutoConfiguration.class)
@ConditionalOnClass({ PgVectorStore.class, DataSource.class, JdbcTemplate.class })
@EnableConfigurationProperties(PgVectorStoreProperties.class)
@ConditionalOnProperty(name = SpringAIVectorStoreTypes.TYPE, havingValue = SpringAIVectorStoreTypes.PGVECTOR,
		matchIfMissing = true)
public class PgVectorStoreAutoConfiguration {

	@Bean
	@ConditionalOnMissingBean(BatchingStrategy.class)
	BatchingStrategy pgVectorStoreBatchingStrategy() {
		return new TokenCountBatchingStrategy();
	}

	@Bean
	@ConditionalOnMissingBean
	public PgVectorStore vectorStore(JdbcTemplate jdbcTemplate, EmbeddingModel embeddingModel,
			PgVectorStoreProperties properties, ObjectProvider<ObservationRegistry> observationRegistry,
			ObjectProvider<VectorStoreObservationConvention> customObservationConvention,
			BatchingStrategy batchingStrategy) {

		var initializeSchema = properties.isInitializeSchema();

		return PgVectorStore.builder(jdbcTemplate, embeddingModel)
			.schemaName(properties.getSchemaName())
			.idType(properties.getIdType())
			.vectorTableName(properties.getTableName())
			.vectorTableValidationsEnabled(properties.isSchemaValidation())
			.dimensions(properties.getDimensions())
			.distanceType(properties.getDistanceType())
			.removeExistingVectorStoreTable(properties.isRemoveExistingVectorStoreTable())
			.indexType(properties.getIndexType())
			.initializeSchema(initializeSchema)
			.observationRegistry(observationRegistry.getIfUnique(() -> ObservationRegistry.NOOP))
			.customObservationConvention(customObservationConvention.getIfAvailable(() -> null))
			.batchingStrategy(batchingStrategy)
			.maxDocumentBatchSize(properties.getMaxDocumentBatchSize())
			.build();
	}

}

PgVectorStoreAutoConfiguration在spring.ai.vectorstore.typepgvector时会自动装配PgVectorStore,它依赖PgVectorStoreProperties及JdbcTemplateAutoConfiguration

PgVectorStoreProperties

org/springframework/ai/vectorstore/pgvector/autoconfigure/PgVectorStoreProperties.java

ini 复制代码
@ConfigurationProperties(PgVectorStoreProperties.CONFIG_PREFIX)
public class PgVectorStoreProperties extends CommonVectorStoreProperties {

	public static final String CONFIG_PREFIX = "spring.ai.vectorstore.pgvector";

	private int dimensions = PgVectorStore.INVALID_EMBEDDING_DIMENSION;

	private PgIndexType indexType = PgIndexType.HNSW;

	private PgDistanceType distanceType = PgDistanceType.COSINE_DISTANCE;

	private boolean removeExistingVectorStoreTable = false;

	// Dynamically generate table name in PgVectorStore to allow backward compatibility
	private String tableName = PgVectorStore.DEFAULT_TABLE_NAME;

	private String schemaName = PgVectorStore.DEFAULT_SCHEMA_NAME;

	private PgVectorStore.PgIdType idType = PgVectorStore.PgIdType.UUID;

	private boolean schemaValidation = PgVectorStore.DEFAULT_SCHEMA_VALIDATION;

	private int maxDocumentBatchSize = PgVectorStore.MAX_DOCUMENT_BATCH_SIZE;

	//......
}	

PgVectorStoreProperties继承了CommonVectorStoreProperties的initializeSchema配置,它提供了spring.ai.vectorstore.pgvector的配置,主要有dimensions、indexType、distanceType、removeExistingVectorStoreTable、tableName、schemaName、idType、schemaValidation、maxDocumentBatchSize这几个属性

JdbcTemplateAutoConfiguration

org/springframework/boot/autoconfigure/jdbc/JdbcTemplateAutoConfiguration.java

less 复制代码
@AutoConfiguration(after = DataSourceAutoConfiguration.class)
@ConditionalOnClass({ DataSource.class, JdbcTemplate.class })
@ConditionalOnSingleCandidate(DataSource.class)
@EnableConfigurationProperties(JdbcProperties.class)
@Import({ DatabaseInitializationDependencyConfigurer.class, JdbcTemplateConfiguration.class,
		NamedParameterJdbcTemplateConfiguration.class })
public class JdbcTemplateAutoConfiguration {

}

JdbcTemplateAutoConfiguration引入了DatabaseInitializationDependencyConfigurer、JdbcTemplateConfiguration、NamedParameterJdbcTemplateConfiguration

小结

Spring AI提供了spring-ai-starter-vector-store-pgvector用于自动装配PgVectorStore。除了spring.ai.vectorstore.pgvector的配置,还需要配置spring.datasource

doc

相关推荐
Shawn_Shawn6 小时前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
Tadas-Gao17 小时前
缸中之脑:大模型架构的智能幻象与演进困局
人工智能·深度学习·机器学习·架构·大模型·llm
数据智能老司机21 小时前
用于构建多智能体系统的智能体架构模式——可解释性与合规性的智能体模式
人工智能·llm·agent
数据智能老司机21 小时前
用于构建多智能体系统的智能体架构模式——人类—智能体交互模式
人工智能·llm·agent
数据智能老司机21 小时前
用于构建多智能体系统的智能体架构模式——高级适配:打造具备学习能力的智能体
人工智能·llm·agent
数据智能老司机21 小时前
用于构建多智能体系统的智能体架构模式——智能体式AI架构:组件与交互
人工智能·llm·agent
数据智能老司机21 小时前
用于构建多智能体系统的智能体架构模式——多智能体协调模式
人工智能·llm·agent
在未来等你1 天前
AI Agent Skill Day 1:Agent Skill概述:技能系统的核心架构与设计理念
llm·ai agent·skill·技能开发·function calling·tool use
CoderJia程序员甲1 天前
GitHub 热榜项目 - 日榜(2026-02-08)
git·ai·开源·llm·github