聊聊Spring AI的PgVectorStore

本文主要研究一下Spring AI的PgVectorStore

示例

pom.xml

xml 复制代码
		<dependency>
			<groupId>org.springframework.ai</groupId>
			<artifactId>spring-ai-starter-vector-store-pgvector</artifactId>
		</dependency>

pgvector

css 复制代码
docker run -it --rm --name postgres -p 5432:5432 -e POSTGRES_USER=postgres -e POSTGRES_PASSWORD=postgres pgvector/pgvector:pg16

配置

yaml 复制代码
spring:
  datasource:
    name: pgvector
    driverClassName: org.postgresql.Driver
    url: jdbc:postgresql://localhost:5432/postgres?currentSchema=public&connectTimeout=60&socketTimeout=60
    username: postgres
    password: postgres
  ai:
    vectorstore:
      type: pgvector
      pgvector:
        initialize-schema: true
        index-type: HNSW
        distance-type: COSINE_DISTANCE
        dimensions: 1024
        max-document-batch-size: 10000
        schema-name: public
        table-name: vector_store

设置initialize-schema为true,默认会执行如下初始化脚本:

sql 复制代码
CREATE EXTENSION IF NOT EXISTS vector;
CREATE EXTENSION IF NOT EXISTS hstore;
CREATE EXTENSION IF NOT EXISTS "uuid-ossp";

CREATE TABLE IF NOT EXISTS vector_store (
	id uuid DEFAULT uuid_generate_v4() PRIMARY KEY,
	content text,
	metadata json,
	embedding vector(1536) // 1536 is the default embedding dimension
);

CREATE INDEX ON vector_store USING HNSW (embedding vector_cosine_ops);

脚本源码: org/springframework/ai/vectorstore/pgvector/PgVectorStore.java

kotlin 复制代码
	public void afterPropertiesSet() {

		logger.info("Initializing PGVectorStore schema for table: {} in schema: {}", this.getVectorTableName(),
				this.getSchemaName());

		logger.info("vectorTableValidationsEnabled {}", this.schemaValidation);

		if (this.schemaValidation) {
			this.schemaValidator.validateTableSchema(this.getSchemaName(), this.getVectorTableName());
		}

		if (!this.initializeSchema) {
			logger.debug("Skipping the schema initialization for the table: {}", this.getFullyQualifiedTableName());
			return;
		}

		// Enable the PGVector, JSONB and UUID support.
		this.jdbcTemplate.execute("CREATE EXTENSION IF NOT EXISTS vector");
		this.jdbcTemplate.execute("CREATE EXTENSION IF NOT EXISTS hstore");

		if (this.idType == PgIdType.UUID) {
			this.jdbcTemplate.execute("CREATE EXTENSION IF NOT EXISTS \"uuid-ossp\"");
		}

		this.jdbcTemplate.execute(String.format("CREATE SCHEMA IF NOT EXISTS %s", this.getSchemaName()));

		// Remove existing VectorStoreTable
		if (this.removeExistingVectorStoreTable) {
			this.jdbcTemplate.execute(String.format("DROP TABLE IF EXISTS %s", this.getFullyQualifiedTableName()));
		}

		this.jdbcTemplate.execute(String.format("""
				CREATE TABLE IF NOT EXISTS %s (
					id %s PRIMARY KEY,
					content text,
					metadata json,
					embedding vector(%d)
				)
				""", this.getFullyQualifiedTableName(), this.getColumnTypeName(), this.embeddingDimensions()));

		if (this.createIndexMethod != PgIndexType.NONE) {
			this.jdbcTemplate.execute(String.format("""
					CREATE INDEX IF NOT EXISTS %s ON %s USING %s (embedding %s)
					""", this.getVectorIndexName(), this.getFullyQualifiedTableName(), this.createIndexMethod,
					this.getDistanceType().index));
		}
	}

代码

less 复制代码
    @Test
    public void testAddAndSearch() {
        List<Document> documents = List.of(
                new Document("Spring AI rocks!! Spring AI rocks!! Spring AI rocks!! Spring AI rocks!! Spring AI rocks!!", Map.of("meta1", "meta1")),
                new Document("The World is Big and Salvation Lurks Around the Corner"),
                new Document("You walk forward facing the past and you turn back toward the future.", Map.of("meta2", "meta2")));

        // Add the documents to Milvus Vector Store
        pgVectorStore.add(documents);

        // Retrieve documents similar to a query
        List<Document> results = this.pgVectorStore.similaritySearch(SearchRequest.builder().query("Spring").topK(5).build());
        log.info("results:{}", JSON.toJSONString(results));
    }

输出如下:

swift 复制代码
results:[{"contentFormatter":{"excludedEmbedMetadataKeys":[],"excludedInferenceMetadataKeys":[],"metadataSeparator":"\n","metadataTemplate":"{key}: {value}","textTemplate":"{metadata_string}\n\n{content}"},"formattedContent":"distance: 0.43509135\nmeta1: meta1\n\nSpring AI rocks!! Spring AI rocks!! Spring AI rocks!! Spring AI rocks!! Spring AI rocks!!","id":"9dbce9af-0451-4bdb-8f03-1f8b8c4d696f","metadata":{"distance":0.43509135,"meta1":"meta1"},"score":0.5649086534976959,"text":"Spring AI rocks!! Spring AI rocks!! Spring AI rocks!! Spring AI rocks!! Spring AI rocks!!"},{"contentFormatter":{"$ref":"$[0].contentFormatter"},"formattedContent":"distance: 0.57093126\n\nThe World is Big and Salvation Lurks Around the Corner","id":"92a45683-11fc-48b7-8676-dcca3b518dd4","metadata":{"distance":0.57093126},"score":0.42906874418258667,"text":"The World is Big and Salvation Lurks Around the Corner"},{"contentFormatter":{"$ref":"$[0].contentFormatter"},"formattedContent":"distance: 0.5936024\nmeta2: meta2\n\nYou walk forward facing the past and you turn back toward the future.","id":"298f6565-bcc7-4cbc-8552-4c0e2d021dbf","metadata":{"distance":0.5936024,"meta2":"meta2"},"score":0.40639758110046387,"text":"You walk forward facing the past and you turn back toward the future."}]

源码

PgVectorStoreAutoConfiguration

org/springframework/ai/vectorstore/pgvector/autoconfigure/PgVectorStoreAutoConfiguration.java

less 复制代码
@AutoConfiguration(after = JdbcTemplateAutoConfiguration.class)
@ConditionalOnClass({ PgVectorStore.class, DataSource.class, JdbcTemplate.class })
@EnableConfigurationProperties(PgVectorStoreProperties.class)
@ConditionalOnProperty(name = SpringAIVectorStoreTypes.TYPE, havingValue = SpringAIVectorStoreTypes.PGVECTOR,
		matchIfMissing = true)
public class PgVectorStoreAutoConfiguration {

	@Bean
	@ConditionalOnMissingBean(BatchingStrategy.class)
	BatchingStrategy pgVectorStoreBatchingStrategy() {
		return new TokenCountBatchingStrategy();
	}

	@Bean
	@ConditionalOnMissingBean
	public PgVectorStore vectorStore(JdbcTemplate jdbcTemplate, EmbeddingModel embeddingModel,
			PgVectorStoreProperties properties, ObjectProvider<ObservationRegistry> observationRegistry,
			ObjectProvider<VectorStoreObservationConvention> customObservationConvention,
			BatchingStrategy batchingStrategy) {

		var initializeSchema = properties.isInitializeSchema();

		return PgVectorStore.builder(jdbcTemplate, embeddingModel)
			.schemaName(properties.getSchemaName())
			.idType(properties.getIdType())
			.vectorTableName(properties.getTableName())
			.vectorTableValidationsEnabled(properties.isSchemaValidation())
			.dimensions(properties.getDimensions())
			.distanceType(properties.getDistanceType())
			.removeExistingVectorStoreTable(properties.isRemoveExistingVectorStoreTable())
			.indexType(properties.getIndexType())
			.initializeSchema(initializeSchema)
			.observationRegistry(observationRegistry.getIfUnique(() -> ObservationRegistry.NOOP))
			.customObservationConvention(customObservationConvention.getIfAvailable(() -> null))
			.batchingStrategy(batchingStrategy)
			.maxDocumentBatchSize(properties.getMaxDocumentBatchSize())
			.build();
	}

}

PgVectorStoreAutoConfiguration在spring.ai.vectorstore.typepgvector时会自动装配PgVectorStore,它依赖PgVectorStoreProperties及JdbcTemplateAutoConfiguration

PgVectorStoreProperties

org/springframework/ai/vectorstore/pgvector/autoconfigure/PgVectorStoreProperties.java

ini 复制代码
@ConfigurationProperties(PgVectorStoreProperties.CONFIG_PREFIX)
public class PgVectorStoreProperties extends CommonVectorStoreProperties {

	public static final String CONFIG_PREFIX = "spring.ai.vectorstore.pgvector";

	private int dimensions = PgVectorStore.INVALID_EMBEDDING_DIMENSION;

	private PgIndexType indexType = PgIndexType.HNSW;

	private PgDistanceType distanceType = PgDistanceType.COSINE_DISTANCE;

	private boolean removeExistingVectorStoreTable = false;

	// Dynamically generate table name in PgVectorStore to allow backward compatibility
	private String tableName = PgVectorStore.DEFAULT_TABLE_NAME;

	private String schemaName = PgVectorStore.DEFAULT_SCHEMA_NAME;

	private PgVectorStore.PgIdType idType = PgVectorStore.PgIdType.UUID;

	private boolean schemaValidation = PgVectorStore.DEFAULT_SCHEMA_VALIDATION;

	private int maxDocumentBatchSize = PgVectorStore.MAX_DOCUMENT_BATCH_SIZE;

	//......
}	

PgVectorStoreProperties继承了CommonVectorStoreProperties的initializeSchema配置,它提供了spring.ai.vectorstore.pgvector的配置,主要有dimensions、indexType、distanceType、removeExistingVectorStoreTable、tableName、schemaName、idType、schemaValidation、maxDocumentBatchSize这几个属性

JdbcTemplateAutoConfiguration

org/springframework/boot/autoconfigure/jdbc/JdbcTemplateAutoConfiguration.java

less 复制代码
@AutoConfiguration(after = DataSourceAutoConfiguration.class)
@ConditionalOnClass({ DataSource.class, JdbcTemplate.class })
@ConditionalOnSingleCandidate(DataSource.class)
@EnableConfigurationProperties(JdbcProperties.class)
@Import({ DatabaseInitializationDependencyConfigurer.class, JdbcTemplateConfiguration.class,
		NamedParameterJdbcTemplateConfiguration.class })
public class JdbcTemplateAutoConfiguration {

}

JdbcTemplateAutoConfiguration引入了DatabaseInitializationDependencyConfigurer、JdbcTemplateConfiguration、NamedParameterJdbcTemplateConfiguration

小结

Spring AI提供了spring-ai-starter-vector-store-pgvector用于自动装配PgVectorStore。除了spring.ai.vectorstore.pgvector的配置,还需要配置spring.datasource

doc

相关推荐
人工干智能16 小时前
科普:LLM领域中的“样本(sample)”、“指令(instruction)”和“提示词(prompt)”
llm·prompt
mwq3012317 小时前
解密“混合专家模型” (MoE) 的全部魔法
人工智能·llm
大隐隐于野21 小时前
从零开始理解和编写LLM中的KV缓存
java·缓存·llm
智泊AI1 天前
大语言模型如何微调(Fine-tuning)?
llm
大模型教程1 天前
2张4090本地微调万亿参数模型!KTransformers上线模型微调功能,使用指南来了
程序员·llm·agent
大模型教程1 天前
快速上手Qwen Code:本地部署与环境配置全攻略
程序员·llm·agent
离开地球表面_991 天前
AIGC时代的必备技能--Prompt工程
llm·aigc
亚里随笔1 天前
突破智能体训练瓶颈:DreamGym如何通过经验合成实现可扩展的强化学习?
人工智能·语言模型·自然语言处理·llm·agentic
AI大模型1 天前
本地部署vLLM+Qwen3:高性能大模型推理引擎,比Ollama强在哪?
程序员·llm·agent