Python: 实现数据可视化分析系统

后端基于Python 开源的 Web 框架 Flask,前端页面采用 LayUI 框架以及 Echarts 图表,数据库为sqlite。系统的功能模块分为数据采集和存储模块、数据处理和分析模块、可视化展示模块和系统管理模块。情感分析方面使用LDA等主题建模技术,结合领域特定词汇进行优化。有可视化大屏。

实现的结果如图所示:

项目工程目录:

具体实现步骤:

一、app.py 后端核心代码

app.py 后端核心代码

from flask import Flask, render_template, jsonify

import sqlite3

from collections import defaultdict

import jieba

import re

app = Flask(name)

自定义情感词典(示例)

sentiment_words = {

'好': 'positive', '不错': 'positive', '推荐': 'positive',

'差': 'negative', '难吃': 'negative', '投诉': 'negative'

}

数据库连接

def get_db():

conn = sqlite3.connect('reviews.db')

conn.row_factory = sqlite3.Row

return conn

情感分析函数

def analyze_sentiment(text):

positive = negative = 0

words = jieba.lcut(text)

for word in words:

if word in sentiment_words:

if sentiment_words[word] == 'positive':

positive += 1

else:

negative += 1

if positive > negative:

return 'positive'

elif negative > positive:

return 'negative'

else:

return 'neutral'

路由定义

@app.route('/')

def dashboard():

return render_template('dashboard.html')

情感分布数据接口

@app.route('/api/sentiment')

def sentiment_data():

conn = get_db()

cursor = conn.cursor()

cursor.execute('SELECT sentiment, COUNT(*) FROM reviews GROUP BY sentiment')

data = {row[0]: row[1] for row in cursor.fetchall()}

conn.close()

return jsonify(data)

评分分布接口

@app.route('/api/score_dist')

def score_dist():

conn = get_db()

cursor = conn.execute('''

SELECT score, COUNT(*) as count

FROM reviews

GROUP BY score ORDER BY score

''')

result = [{'score': row[0], 'count': row[1]} for row in cursor]

conn.close()

return jsonify(result)

分类统计接口

@app.route('/api/category_stats')

def category_stats():

conn = get_db()

cursor = conn.execute('''

SELECT category, COUNT(*) as count, AVG(score) as avg_score

FROM reviews

GROUP BY category

''')

result = [{

'category': row[0],

'count': row[1],

'avg_score': round(row[2], 1)

} for row in cursor]

conn.close()

return jsonify(result)

关键词提取接口

@app.route('/api/keywords/<type>')

def keywords(type):

conn = get_db()

cursor = conn.execute('SELECT content FROM reviews')

texts = [row[0] for row in cursor.fetchall()]

关键词提取逻辑

keywords = []

pattern = re.compile(r'服务|态度|热情' if type == 'service' else r'味道|口感|食材')

for text in texts:

words = jieba.lcut(text)

keywords.extend([w for w in words if pattern.search(w)])

统计词频

freq = defaultdict(int)

for word in keywords:

freq[word] += 1

return jsonify([{'name': k, 'value': v} for k, v in freq.items()])

if name == 'main':

app.run(debug=True)

二、前端代码

<!-- templates/dashboard.html 前端页面 -->

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8">

<title>数据可视化分析系统</title>

<link rel="stylesheet" href="/static/layui/css/layui.css">

<script src="/static/echarts.min.js"></script>

<script src="/static/layui/layui.js"></script>

</head>

<body>

<div class="layui-container">

<!-- 情感分布 -->

<div class="layui-row">

<div class="layui-col-md6">

<div id="sentimentChart" style="height:400px"></div>

</div>

<div class="layui-col-md6">

<div id="scoreChart" style="height:400px"></div>

</div>

</div>

<!-- 分类统计 -->

<div class="layui-row">

<div id="categoryChart" style="height:400px"></div>

</div>

<!-- 关键词云 -->

<div class="layui-row">

<div class="layui-col-md6">

<div id="serviceWordcloud" style="height:300px"></div>

</div>

<div class="layui-col-md6">

<div id="tasteWordcloud" style="height:300px"></div>

</div>

</div>

</div>

<script>

layui.use(function(){

const = layui.;

// 情感分布饼图

const sentimentChart = echarts.init(document.getElementById('sentimentChart'));

$.get('/api/sentiment', function(data){

sentimentChart.setOption({

title: { text: '评论情感分布' },

series: [{

type: 'pie',

data: Object.entries(data).map(([name, value]) => ({name, value}))

}]

});

});

// 评分分布直方图

const scoreChart = echarts.init(document.getElementById('scoreChart'));

$.get('/api/score_dist', function(data){

scoreChart.setOption({

title: { text: '评分分布' },

xAxis: { data: data.map(d => d.score) },

yAxis: { type: 'value' },

series: [{

type: 'bar',

data: data.map(d => d.count)

}]

});

});

// 分类统计柱状图

const categoryChart = echarts.init(document.getElementById('categoryChart'));

$.get('/api/category_stats', function(data){

categoryChart.setOption({

title: { text: '店铺分类统计' },

tooltip: { trigger: 'axis' },

xAxis: { data: data.map(d => d.category) },

yAxis: [{ type: 'value', name: '评论量' }],

series: [{

name: '评论量',

type: 'bar',

data: data.map(d => d.count)

}]

});

});

// 服务态度词云

const serviceWC = echarts.init(document.getElementById('serviceWordcloud'));

$.get('/api/keywords/service', function(data){

serviceWC.setOption({

title: { text: '服务态度关键词' },

series: [{

type: 'wordCloud',

data: data

}]

});

});

// 菜品口味词云

const tasteWC = echarts.init(document.getElementById('tasteWordcloud'));

$.get('/api/keywords/taste', function(data){

tasteWC.setOption({

title: { text: '菜品口味关键词' },

series: [{

type: 'wordCloud',

data: data

}]

});

});

});

</script>

</body>

</html>

三、系统运行说明:

  1. 需要安装的依赖:

bash

复制代码
pip install flask jieba
  1. 目录结构:
复制代码
├── app.py
├── templates
│   └── dashboard.html
└── static
    ├── layui
    │   ├── css
    │   └── js
    └── echarts.min.js

四、创建DB,插入数据:

复制代码
import sqlite3
from flask import jsonify

#insert data to DB.
def get_db():
    conn = sqlite3.connect('reviews.db')
    cursor = conn.cursor()
    # 创建表
    create_table_sql = """
        CREATE TABLE IF NOT EXISTS reviews (
            id INTEGER PRIMARY KEY,
            content TEXT,
            score INTEGER,
            category TEXT,
            region TEXT,
            sentiment TEXT
        );
        """
    cursor.execute(create_table_sql)
    conn.commit()  # 提交事务

    # 插入一些示例数据
    insert_data_sql = """
        INSERT INTO reviews (id,content, score, category, region, sentiment)
        VALUES 
        (1,'这家店的环境非常好,服务也很周到,菜品味道更是一流!', 5, '中餐', '北京', '正面'),
        (2,'菜品口味太一般了,没什么特色,价格还贵。', 2, '西餐', '上海', '负面');
        """
    cursor.execute(insert_data_sql)
    conn.commit()  # 提交事务
    cursor.execute('SELECT sentiment, COUNT(*) FROM reviews GROUP BY sentiment')
    data = {row[0]: row[1] for row in cursor.fetchall()}
    print("这是output: "+jsonify(data))
    conn.row_factory = sqlite3.Row
    return conn
def main():
    conn = get_db()
    cursor = conn.cursor()
    print("这是主函数的内容。")

if __name__ == "__main__":
    main()
相关推荐
云和数据.ChenGuang1 小时前
人工智能 机器学习期末考试题
开发语言·人工智能·python·机器学习·毕业设计
我是小伍同学2 小时前
基于卷积神经网络和Pyqt5的猫狗识别小程序
人工智能·python·神经网络·qt·小程序·cnn
lllsure4 小时前
Python基础语法
开发语言·python
winfredzhang6 小时前
使用Python 打造多格式文件预览工具 — 图、PDF、Word、Excel 一站式查看
python·pdf·word·excel·照片·查看,zip,复制
浩皓素6 小时前
Python连接云端服务器:基于Paramiko库的实践与问题剖析
python
致于数据科学家的小陈6 小时前
Go 层级菜单树转 json 处理
python·go·json·菜单树·菜单权限·children
伊织code6 小时前
MixTeX - 支持CPU推理的多模态LaTeX OCR
python·ai·ocr·latex·mixtex
jardonwang16 小时前
DeepInjectSQL - 基于 AI 生成对抗网络(GAN)的下一代 SQL 注入自动化漏洞猎手
python·测试工具·生成对抗网络·安全性测试
大G哥6 小时前
加速LLM大模型推理,KV缓存技术详解与PyTorch实现
人工智能·pytorch·python·深度学习·缓存
Python×CATIA工业智造7 小时前
深入解析多线程与多进程:从理论到Python实践
python·pycharm