Colmap
安装
Windows
从 GitHub发布页 GitHub Releases 下载预编译的二进制, 区分带CUDA和不带CUDA的版本.
Ubuntu
在 Ubuntu 22.04 下可以通过apt install colmap
安装, 但是这样安装的是不带CUDA支持的版本
支持CUDA的版本需要通过编译安装, 可以参考的安装说明
- https://github.com/colmap/colmap/issues/2366
- https://github.com/dberga/nerfstudio/blob/main/INSTALL.md
注意不要被 Conda 的环境影响
Make sure you configure and compile from a consistent dev environment. It seems you are using anaconda. You probably want to start from a clean build folder and make sure you are not in a virtual anaconda environment.
编译步骤 (参考 https://github.com/dberga/nerfstudio/blob/main/INSTALL.md )
- 安装依赖
bash
sudo apt-get install \
git \
cmake \
ninja-build \
build-essential \
libboost-program-options-dev \
libboost-filesystem-dev \
libboost-graph-dev \
libboost-system-dev \
libeigen3-dev \
libflann-dev \
libfreeimage-dev \
libmetis-dev \
libgoogle-glog-dev \
libgtest-dev \
libsqlite3-dev \
libglew-dev \
qtbase5-dev \
libqt5opengl5-dev \
libcgal-dev \
libceres-dev
导出仓库
bash
git clone https://github.com/colmap/colmap.git
编译, 注意CMAKE_CUDA_ARCHITECTURES
代表的是显卡硬件架构编号, rtx2080ti 对应75, rtx4060ti 对应89
bash
cd colmap
mkdir build
cd build
cmake .. -GNinja -DCMAKE_CUDA_ARCHITECTURES=75
sudo chown -R $(whoami) .
ninja -j1
sudo ninja install