智能体(AI Agent)开发实战之【LangChain】(二)结合大模型基于RAG实现本地知识库问答

上一篇介绍了接入大模型输出结果,实现了基本的问答功能。现有大模型都是基于公开资料训练的,搜索垂直专业领域的知识可能会出现问题。本篇文章会基于RAG实现简单的知识库问答功能。

一、RAG介绍

RAG(Retrieval Augmented Generation)即检索增强生成,是一种结合了信息检索和大语言模型(LLM)生成能力的技术,旨在解决大语言模型在回答问题时,因知识更新不及时、缺乏特定领域知识或事实性错误等问题,通过在生成回答之前检索相关外部知识源来增强回答的准确性和可靠性。

1.工作原理

检索阶段:当用户提出一个问题时,RAG 系统首先将问题发送到内部的知识源(如文档库、数据库等)进行检索。通常会使用向量检索技术,将问题和知识源中的文档都转换为向量表示,然后计算问题向量与文档向量之间的相似度,找出与问题最相关的文档段落

生成阶段:将检索到的相关文档段落与用户的问题一起输入到大语言模型中,大语言模型结合这些外部知识生成最终的回答。

2.优势

知识更新:可以利用最新的内部知识来回答问题,避免了大语言模型因训练数据固定而导致的知识过时问题。

特定领域知识:对于特定领域的问题,能够从专业的知识源中获取相关信息,提高回答的专业性和准确性。

减少幻觉:通过引入内部知识,减少大语言模型生成回答时出现问答错误和幻觉内容

二、具体的功能实现

1.准备知识源

选择合适的知识源,如文本文件、PDF、Word、数据库等本地或内部的结构化或非结构化数据。如我在本地准备了一个自己胡编的一段内容。

2.对知识源进行预处理,包括文本清洗、分词等

3.数据向量化

选择合适的向量数据库,如 FAISS、Chroma 等。我分别试了这两个数据库都是可以的。然后将预处理后的知识源文档转换为向量并存储到向量数据库中。

4.创建检索并设置问答链

5.运行代码测试功能

大模型会结合内部知识库回答问题,如上图所示,可以看到回答的效果。我再次调整下问题,如下图的回答效果是可以的。

三、总结

LangChain 提供了丰富的动态扩展功能,可以基于RAG实现企业内部私有智能体。在使用RAG时也需注意数据质量或直接影响 RAG 系统的性能,需要对数据进行严格的清洗和预处理。还需选择合适的向量表示方法和嵌入模型,提高检索的准确性和企业适用场景。

相关推荐
WWZZ20253 分钟前
快速上手大模型:机器学习2(一元线性回归、代价函数、梯度下降法)
人工智能·算法·机器学习·计算机视觉·机器人·大模型·slam
AKAMAI17 分钟前
数据孤岛破局之战 :跨业务分析的难题攻坚
运维·人工智能·云计算
Chicheng_MA22 分钟前
算能 CV184 智能相机整体方案介绍
人工智能·数码相机·算能
Element_南笙24 分钟前
吴恩达新课程:Agentic AI(笔记2)
数据库·人工智能·笔记·python·深度学习·ui·自然语言处理
倔强青铜三33 分钟前
苦练Python第69天:subprocess模块从入门到上瘾,手把手教你驯服系统命令!
人工智能·python·面试
Antonio91536 分钟前
【图像处理】rgb和srgb
图像处理·人工智能·数码相机
倔强青铜三38 分钟前
苦练 Python 第 68 天:并发狂飙!concurrent 模块让你 CPU 原地起飞
人工智能·python·面试
星期天要睡觉1 小时前
深度学习——循环神经网络(RNN)实战项目:基于PyTorch的文本情感分析
人工智能·python·rnn·深度学习·神经网络
2401_858869801 小时前
目标检测2
人工智能·目标检测·计算机视觉
ARM+FPGA+AI工业主板定制专家1 小时前
基于ZYNQ的目标检测算法硬件加速器优化设计
人工智能·目标检测·计算机视觉·fpga开发·自动驾驶