智能体(AI Agent)开发实战之【LangChain】(二)结合大模型基于RAG实现本地知识库问答

上一篇介绍了接入大模型输出结果,实现了基本的问答功能。现有大模型都是基于公开资料训练的,搜索垂直专业领域的知识可能会出现问题。本篇文章会基于RAG实现简单的知识库问答功能。

一、RAG介绍

RAG(Retrieval Augmented Generation)即检索增强生成,是一种结合了信息检索和大语言模型(LLM)生成能力的技术,旨在解决大语言模型在回答问题时,因知识更新不及时、缺乏特定领域知识或事实性错误等问题,通过在生成回答之前检索相关外部知识源来增强回答的准确性和可靠性。

1.工作原理

检索阶段:当用户提出一个问题时,RAG 系统首先将问题发送到内部的知识源(如文档库、数据库等)进行检索。通常会使用向量检索技术,将问题和知识源中的文档都转换为向量表示,然后计算问题向量与文档向量之间的相似度,找出与问题最相关的文档段落

生成阶段:将检索到的相关文档段落与用户的问题一起输入到大语言模型中,大语言模型结合这些外部知识生成最终的回答。

2.优势

知识更新:可以利用最新的内部知识来回答问题,避免了大语言模型因训练数据固定而导致的知识过时问题。

特定领域知识:对于特定领域的问题,能够从专业的知识源中获取相关信息,提高回答的专业性和准确性。

减少幻觉:通过引入内部知识,减少大语言模型生成回答时出现问答错误和幻觉内容

二、具体的功能实现

1.准备知识源

选择合适的知识源,如文本文件、PDF、Word、数据库等本地或内部的结构化或非结构化数据。如我在本地准备了一个自己胡编的一段内容。

2.对知识源进行预处理,包括文本清洗、分词等

3.数据向量化

选择合适的向量数据库,如 FAISS、Chroma 等。我分别试了这两个数据库都是可以的。然后将预处理后的知识源文档转换为向量并存储到向量数据库中。

4.创建检索并设置问答链

5.运行代码测试功能

大模型会结合内部知识库回答问题,如上图所示,可以看到回答的效果。我再次调整下问题,如下图的回答效果是可以的。

三、总结

LangChain 提供了丰富的动态扩展功能,可以基于RAG实现企业内部私有智能体。在使用RAG时也需注意数据质量或直接影响 RAG 系统的性能,需要对数据进行严格的清洗和预处理。还需选择合适的向量表示方法和嵌入模型,提高检索的准确性和企业适用场景。

相关推荐
中电金信39 分钟前
重构金融数智化产业版图:中电金信“链主”之道
大数据·人工智能
奋斗者1号1 小时前
Docker 部署 - Crawl4AI 文档 (v0.5.x)
人工智能·爬虫·机器学习
陈奕昆1 小时前
五、【LLaMA-Factory实战】模型部署与监控:从实验室到生产的全链路实践
开发语言·人工智能·python·llama·大模型微调
多巴胺与内啡肽.1 小时前
OpenCV进阶操作:光流估计
人工智能·opencv·计算机视觉
妄想成为master1 小时前
计算机视觉----时域频域在图像中的意义、傅里叶变换在图像中的应用、卷积核的频域解释
人工智能·计算机视觉·傅里叶
NLP小讲堂2 小时前
LLaMA Factory 深度调参
人工智能·机器学习
不懂嵌入式2 小时前
基于深度学习的水果识别系统设计
人工智能·深度学习
江小皮不皮2 小时前
为何选择MCP?自建流程与Anthropic MCP的对比分析
人工智能·llm·nlp·aigc·sse·mcp·fastmcp
GIS数据转换器2 小时前
当三维地理信息遇上气象预警:电网安全如何实现“先知先觉”?
人工智能·科技·安全·gis·智慧城市·交互
网易易盾2 小时前
AIGC时代的内容安全:AI检测技术如何应对新型风险挑战?
人工智能·安全·aigc