一、介绍
蘑菇识别系统基于TensorFlow框架,采用ResNet50卷积神经网络结构进行算法构建。系统在包含九类常见蘑菇(香菇、毒鹅膏菌、牛肝菌、网状菌、毒镰孢、湿孢菌、乳菇、红菇、松茸)的数据集上进行了多轮迭代训练,最终获得高精度识别模型,并部署于Web端实现可视化交互。
前端: Vue3、Element Plus
后端:Django
算法:TensorFlow、卷积神经网络算法
具体功能:
- 系统分为管理员和用户两个角色,登录后根据角色显示其可访问的页面模块。
- 登录系统后可发布、查看、编辑文章,创建文章功能中集成了markdown编辑器,可对文章进行编辑。
- 在图像识别功能中,用户上传图片后,点击识别,可输出其识别结果和置信度
- 基于Echart以柱状图形式输出所有种类对应的置信度分布图。
- 在智能问答功能模块中:用户输入问题,后台通过对接Deepseek接口实现智能问答功能。
- 管理员可在用户管理模块中,对用户账户进行管理和编辑。
选题背景与意义 :
蘑菇种类繁多,形态相似,但部分野生蘑菇具有剧毒,仅凭肉眼难以准确区分,存在极高的误食中毒风险。同时,传统的人工鉴别方式依赖专家经验,效率低下且难以普及。随着人工智能技术的迅猛发展,深度学习在图像识别领域展现出巨大潜力。为此,本项目旨在开发一个基于Web的智能蘑菇识别系统。该系统采用ResNet50卷积神经网络构建高精度识别模型,能够快速、准确地对九类常见蘑菇进行鉴别,并集成知识分享与智能问答功能,为用户提供一个集识别、学习、交流于一体的综合性平台,对预防蘑菇中毒、普及菌类知识具有重要意义。
二、系统效果图片展示


三、演示视频 and 完整代码 and 安装
四、卷积神经网络算法介绍
卷积神经网络是一种专为处理网格状数据(如图像)而设计的深度学习模型。其核心在于通过"卷积核"在输入数据上进行滑动窗口式的特征提取。这个过程可以自动学习到从边缘、纹理到局部形状,乃至复杂物体部件的多层次特征。CNN主要由卷积层、池化层和全连接层构成:卷积层负责提取特征;池化层(如最大池化)用于降低数据维度,增强特征的平移不变性并减少计算量;全连接层则最终将学习到的分布式特征映射到样本标记空间,进行分类或回归。这种局部连接和权值共享的特性,使CNN在处理图像时参数更少、效率更高,且具备强大的表征学习能力。
python
import tensorflow as tf
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input, decode_predictions
import numpy as np
from PIL import Image
# 1. 加载预训练的ResNet50模型(包含在ImageNet上训练好的权重)
model = ResNet50(weights='imagenet')
# 2. 加载并预处理图像
img_path = 'your_image.jpg' # 请替换为你的图片路径
image = Image.open(img_path).resize((224, 224)) # ResNet50要求输入为224x224
img_array = np.array(image)
img_array = np.expand_dims(img_array, axis=0) # 添加批次维度,形状变为 (1, 224, 224, 3)
img_array = preprocess_input(img_array) # 应用ResNet50特定的预处理
# 3. 进行预测
predictions = model.predict(img_array)
# 4. 解码并打印最可能的3个结果
decoded_predictions = decode_predictions(predictions, top=3)[0]
print("识别结果:")
for i, (imagenet_id, label, score) in enumerate(decoded_predictions):
print(f"{i+1}: {label} ({score*100:.2f}%)")
以上代码演示了使用TensorFlow调用ResNet50进行图像识别的完整流程。首先,我们加载了在ImageNet数据集上预训练好的ResNet50模型,它已经具备了强大的通用图像特征提取能力。然后,代码将输入图像调整为224x224像素,并进行归一化等预处理。接着,模型对处理后的图像进行前向传播推理,输出一个包含1000个ImageNet类别概率的向量。最后,通过decode_predictions函数将这个向量解码为人类可读的标签和置信度,并打印出最可能的三个预测结果。