Multi-Query Attention (MQA) PyTorch 实现

和多头注意力机制的唯一区别:K、V在不同的head之间实现了复用,而对于不同的头,Q依然不同。

因此这里的代码和标准多头注意力的实现也是几乎完全一样:

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F

class MultiQueryAttention(nn.Module):
    def __init__(self, embed_dim, num_heads):
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = embed_dim // num_heads
        self.scale = self.head_dim ** -0.5

        # 查询、键、值投影
        self.q_proj = nn.Linear(embed_dim, embed_dim)  # 多头查询
        self.k_proj = nn.Linear(embed_dim, self.head_dim)  # 单头键
        self.v_proj = nn.Linear(embed_dim, self.head_dim)  # 单头值
        self.out_proj = nn.Linear(embed_dim, embed_dim)

    def forward(self, x):
        batch_size, seq_len, embed_dim = x.shape

        # 投影
        q = self.q_proj(x)  # (batch, seq_len, embed_dim)
        k = self.k_proj(x)  # (batch, seq_len, head_dim)
        v = self.v_proj(x)  # (batch, seq_len, head_dim)

        # 重塑查询为多头
        q = q.reshape(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
        # (batch, num_heads, seq_len, head_dim)
        
        # 键和值保持单头,扩展到多头维度
        k = k.unsqueeze(1)  # (batch, 1, seq_len, head_dim)
        v = v.unsqueeze(1)  # (batch, 1, seq_len, head_dim)

        # 注意力计算
        scores = torch.matmul(q, k.transpose(-2, -1)) * self.scale
        # (batch, num_heads, seq_len, seq_len)
        attn = F.softmax(scores, dim=-1)
        out = torch.matmul(attn, v)  # (batch, num_heads, seq_len, head_dim)

        # 合并多头
        out = out.transpose(1, 2).reshape(batch_size, seq_len, embed_dim)
        out = self.out_proj(out)  # (batch, seq_len, embed_dim)

        return out

# 示例用法
embed_dim = 64
num_heads = 8
model = MultiQueryAttention(embed_dim, num_heads)
x = torch.randn(2, 10, embed_dim)  # (batch, seq_len, embed_dim)
output = model(x)
print(output.shape)  # torch.Size([2, 10, 64])
相关推荐
多米Domi0112 小时前
0x3f 第49天 面向实习的八股背诵第六天 过了一遍JVM的知识点,看了相关视频讲解JVM内存,垃圾清理,买了plus,稍微看了点确定一下方向
jvm·数据结构·python·算法·leetcode
人工智能训练7 小时前
【极速部署】Ubuntu24.04+CUDA13.0 玩转 VLLM 0.15.0:预编译 Wheel 包 GPU 版安装全攻略
运维·前端·人工智能·python·ai编程·cuda·vllm
yaoming1687 小时前
python性能优化方案研究
python·性能优化
码云数智-大飞8 小时前
使用 Python 高效提取 PDF 中的表格数据并导出为 TXT 或 Excel
python
biuyyyxxx10 小时前
Python自动化办公学习笔记(一) 工具安装&教程
笔记·python·学习·自动化
极客数模10 小时前
【2026美赛赛题初步翻译F题】2026_ICM_Problem_F
大数据·c语言·python·数学建模·matlab
小鸡吃米…11 小时前
机器学习中的代价函数
人工智能·python·机器学习
All The Way North-12 小时前
彻底掌握 RNN(实战):PyTorch API 详解、多层RNN、参数解析与输入机制
pytorch·rnn·深度学习·循环神经网络·参数详解·api详解
Li emily12 小时前
如何通过外汇API平台快速实现实时数据接入?
开发语言·python·api·fastapi·美股
m0_5613596712 小时前
掌握Python魔法方法(Magic Methods)
jvm·数据库·python