Multi-Query Attention (MQA) PyTorch 实现

和多头注意力机制的唯一区别:K、V在不同的head之间实现了复用,而对于不同的头,Q依然不同。

因此这里的代码和标准多头注意力的实现也是几乎完全一样:

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F

class MultiQueryAttention(nn.Module):
    def __init__(self, embed_dim, num_heads):
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = embed_dim // num_heads
        self.scale = self.head_dim ** -0.5

        # 查询、键、值投影
        self.q_proj = nn.Linear(embed_dim, embed_dim)  # 多头查询
        self.k_proj = nn.Linear(embed_dim, self.head_dim)  # 单头键
        self.v_proj = nn.Linear(embed_dim, self.head_dim)  # 单头值
        self.out_proj = nn.Linear(embed_dim, embed_dim)

    def forward(self, x):
        batch_size, seq_len, embed_dim = x.shape

        # 投影
        q = self.q_proj(x)  # (batch, seq_len, embed_dim)
        k = self.k_proj(x)  # (batch, seq_len, head_dim)
        v = self.v_proj(x)  # (batch, seq_len, head_dim)

        # 重塑查询为多头
        q = q.reshape(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
        # (batch, num_heads, seq_len, head_dim)
        
        # 键和值保持单头,扩展到多头维度
        k = k.unsqueeze(1)  # (batch, 1, seq_len, head_dim)
        v = v.unsqueeze(1)  # (batch, 1, seq_len, head_dim)

        # 注意力计算
        scores = torch.matmul(q, k.transpose(-2, -1)) * self.scale
        # (batch, num_heads, seq_len, seq_len)
        attn = F.softmax(scores, dim=-1)
        out = torch.matmul(attn, v)  # (batch, num_heads, seq_len, head_dim)

        # 合并多头
        out = out.transpose(1, 2).reshape(batch_size, seq_len, embed_dim)
        out = self.out_proj(out)  # (batch, seq_len, embed_dim)

        return out

# 示例用法
embed_dim = 64
num_heads = 8
model = MultiQueryAttention(embed_dim, num_heads)
x = torch.randn(2, 10, embed_dim)  # (batch, seq_len, embed_dim)
output = model(x)
print(output.shape)  # torch.Size([2, 10, 64])
相关推荐
那雨倾城17 分钟前
使用 OpenCV 将图像中标记特定颜色区域
人工智能·python·opencv·计算机视觉·视觉检测
LuckyTHP3 小时前
java 使用zxing生成条形码(可自定义文字位置、边框样式)
java·开发语言·python
mahuifa4 小时前
(7)python开发经验
python·qt·pyside6·开发经验
学地理的小胖砸6 小时前
【Python 操作 MySQL 数据库】
数据库·python·mysql
安迪小宝6 小时前
6 任务路由与负载均衡
运维·python·celery
Blossom.1186 小时前
使用Python实现简单的人工智能聊天机器人
开发语言·人工智能·python·低代码·数据挖掘·机器人·云计算
lisw056 小时前
Python高级进阶:Vim与Vi使用指南
python·vim·excel
ayiya_Oese6 小时前
[模型部署] 3. 性能优化
人工智能·python·深度学习·神经网络·机器学习·性能优化
SoraLuna6 小时前
「Mac畅玩AIGC与多模态40」开发篇35 - 用 Python 开发服务对接 SearxNG 与本地知识库
python·macos·aigc
noravinsc7 小时前
redis是内存级缓存吗
后端·python·django