文章目录
前言
随着大数据时代的到来,数据分析和人工智能技术正迅速改变着各行各业的运作方式。DeepSeek作为先进的人工智能模型,不仅在自然语言处理领域具有广泛应用,还在数据分析、图像识别、推荐系统等多个方面展示出巨大的潜力。随着技术的不断进步和发展,DeepSeek有望在未来为我们提供更加智能化、个性化的服务,成为企业和个人在数据驱动决策中不可或缺的工具。
此外,DeepSeek的成功应用将为人工智能领域带来新的突破,推动人工智能与各行业的深度融合。随着越来越多的企业和个人认识到DeepSeek的价值,这一技术将为人类社会创造巨大的社会效益和经济价值,成为未来科技发展的重要引擎之一。
在使用DeepSeek的过程中,笔者深感这一技术的强大与便捷。通过利用DeepSeek在数据分析过程中的各个环节进行实践操作,我们可以大大提高工作效率,降低人力成本,从而为企业和个人带来更高的投资回报率。同时,DeepSeek的智能生成能力使非专业人士也能快速上手,降低了数据分析和人工智能领域的门槛。
内容简介
本书是一本关于数据分析与DeepSeek应用的实用指南,旨在帮助读者了解数据分析的基础知识及如何利用DeepSeek进行高效的数据处理和分析。随着大数据时代的到来,数据分析已经成为现代企业和行业发展的关键驱动力,本书正是为了满足这一市场需求而诞生。
本书共分为8章,涵盖了从数据分析基础知识、常见的统计学方法,到使用DeepSeek进行数据准备、数据清洗、特征提取、数据可视化、回归分析与预测建模、分类与聚类分析及深度学习和大数据分析等全面的内容。各章节详细介绍了如何运用DeepSeek在数据分析过程中解决实际问题,并提供了丰富的实例以帮助读者快速掌握相关技能。
本书适合数据分析师、数据科学家、研究人员、企业管理者、学生及对数据分析和人工智能技术感兴趣的广大读者阅读。通过阅读本书,读者将掌握数据分析的核心概念和方法,并学会如何运用DeepSeek为数据分析工作带来更高的效率和价值。
作者简介
朱宁,中国工程物理研究院硕士,具有丰富的AI研究背景及实战经验,曾任华为AI算法工程师,现为微软资深科学家。深谙机器学习、深度学习和数据分析的理论与实践,专注于深度学习、大模型、计算机视觉和自然语言处理的前沿研究。紧跟人工智能大模型技术的发展,成功将其应用于实际项目中,提升产品在AI方面的能力。
购书链接
京东:https://item.jd.com/14995198.html
当当:http://product.dangdang.com/29875270.html
书籍目录
第1章 数据分析基础和DeepSeek简介 001
1.1 数据分析的定义与重要性 002
1.1.1 数据分析的定义 002
1.1.2 数据分析的重要性 002
1.2 数据分析流程 003
1.2.1 问题定义 003
1.2.2 数据收集 004
1.2.3 数据预处理 004
1.2.4 数据探索 004
1.2.5 特征工程 004
1.2.6 数据建模 004
1.2.7 结果评估 005
1.2.8 结果解释与展示 005
1.3 常见的统计学方法 005
1.3.1 描述性统计分析 005
1.3.2 探索性数据分析 006
1.3.3 概率分布分析 006
1.3.4 参数估计分析 007
1.3.5 假设检验分析 007
1.3.6 回归分析 008
1.4 数据分析与机器学习方法 009
1.4.1 监督学习 009
1.4.2 无监督学习 009
1.4.3 强化学习 010
1.4.4 半监督学习 010
1.5 常见的数据分析工具 011
1.5.1 编程语言和库 012
1.5.2 数据分析软件 013
1.5.3 大数据处理框架 014
1.5.4 云平台和数据分析服务 015
1.6 DeepSeek简介 015
1.6.1 如何直接使用
DeepSeek 016
1.6.2 本地部署DeepSeek 019
1.6.3 DeepSeek的核心理念和算法 021
1.6.4 DeepSeek在数据分析中的应用 024
1.7 小结 025
第2章 使用DeepSeek准备数据 026
2.1 使用DeepSeek编写数据收集脚本 027
2.1.1 使用DeepSeek编写抓取新闻数据脚本 027
2.1.2使用DeepSeek编写抓取电影评论数据脚本 033
2.1.3使用DeepSeek编写抓取股票数据脚本 038
2.1.4使用DeepSeek编写抓取天气预报的数据脚本 042
2.1.5 使用DeepSeek编写抓取商品价格数据脚本 047
2.1.6 使用DeepSeek编写抓取社交媒体数据脚本 056
2.2使用DeepSeek生成数据样本 060
2.2.1使用DeepSeek生成电影评论数据样本 060
2.2.2使用DeepSeek生成对话数据样本 065
2.2.3使用DeepSeek生成新闻标题数据样本 069
2.2.4使用DeepSeek生成产品描述数据样本 074
2.2.5使用DeepSeek生成图像数据样本 079
2.3 小结 082
第3章 使用DeepSeek清洗数据 083
3.1 使用DeepSeek处理数据质量问题 084
3.1.1使用DeepSeek处理缺失值 084
3.1.2 使用DeepSeek检测和处理异常值 093
3.1.3使用DeepSeek检测和删除重复数据 101
3.2使用DeepSeek处理数据结构问题 104
3.2.1使用DeepSeek进行数据格式化转换 104
3.2.2 使用DeepSeek合并不同数据源的数据 112
3.3 小结 123
第4章 使用DeepSeek提取特征 124
4.1 使用DeepSeek进行特征工程 124
4.1.1 使用DeepSeek进行特征选择 125
4.1.2 使用DeepSeek创建衍生特征 139
4.2 使用DeepSeek进行特征降维152
4.2.1 使用DeepSeek实现主成分分析 152
4.2.2 使用DeepSeek实现线性判别分析 160
4.3 小结 169
第5章 使用DeepSeek进行数据可视化 170
5.1 使用DeepSeek创建基本图表 171
5.1.1 使用DeepSeek创建折线图和趋势图 171
5.1.2 使用DeepSeek创建柱状图和条形图 184
5.1.3使用DeepSeek创建饼图和环形图 192
5.1.4 使用DeepSeek创建散点图和气泡图 196
5.2 使用DeepSeek进行高级数据可视化 200
5.2.1 使用DeepSeek创建热力图和相关性图 201
5.2.2 使用DeepSeek创建并行坐标图和雷达图 207
5.2.3 使用DeepSeek创建树形图和层次图 213
5.3 小结 220
第6章 使用DeepSeek进行回归分析与预测建模 221
6.1 使用DeepSeek进行回归分析 221
6.1.1 使用DeepSeek实现线性回归 222
6.1.2使用DeepSeek实现多项式回归 233
6.1.3使用DeepSeek实现岭回归与套索回归 243
6.2 使用DeepSeek进行预测建模 250
6.2.1使用DeepSeek构建神经 网络预测模型 250
6.2.2 使用DeepSeek进行决策树和随机森林预测 258
6.3 小结 265
第7章 使用DeepSeek进行分类与聚类分析 267
7.1 使用DeepSeek进行分类分析 268
7.1.1 直接使用DeepSeek进行情感分类 268
7.1.2使用DeepSeek进行 K-近邻分类 277
7.1.3 使用DeepSeek进行朴素贝叶斯分类 291
7.1.4 使用DeepSeek进行支持向量机分类 300
7.2 使用DeepSeek进行聚类分析 308
7.2.1 使用DeepSeek进行K-Means聚类 308
7.2.2 使用DeepSeek进行层次聚类 317
7.3 小结 326
第8章 使用DeepSeek进行深度学习和大数据分析 328
8.1 使用DeepSeek进行深度学习分析 329
8.1.1 深度学习简介 329
8.1.2 使用DeepSeek构建卷积神经网络 332
8.1.3 使用DeepSeek构建循环神经网络与长短期记忆网络 349
8.2 使用DeepSeek进行大数据分析 363
8.2.1 使用DeepSeek与Hadoop集成进行数据存储与处理 364
8.2.2 使用DeepSeek与 Spark集成进行数据分析与机器学习 377
8.3 小结 386
