提出问题
集装箱海运家具, 沙发, 茶几, 椅子等等, 有多少套家具,以及每个家具的长宽高都会告诉你.
把所有的家具都装进集装箱里, 要求通过算法算出一共需要多少集装箱.
- 1.要考虑怎样装, 需要的集装箱才最少, 因为一个集装箱很贵的.
- 2.要考虑怎样摆放, 占用的体积最小, 找最优解. 比如, 茶几和沙发摞在一起, 旁边还有空余的位置, 那是否还可以再塞个椅子进去。
你会怎样设计算法?
分解问题
这是一个典型的三维装箱问题(3D Bin Packing Problem, 3D-BPP),它是NP-hard问题,意味着没有已知的算法能在多项式时间内找到绝对最优解。因此,我们通常使用启发式算法(Heuristics)或近似算法来寻找一个足够好的解,即尽量少用集装箱。
以下是一个使用C#设计启发式算法的思路和代码框架:
核心思路:
- 容器选择: 通常海运有标准集装箱尺寸,如20GP, 40GP, 40HC。我们需要确定使用哪种尺寸的集装箱,或者允许算法选择混合使用(这会更复杂)。为简化,我们先假设使用同一种标准尺寸的集装箱,例如40HC(内尺寸约为:长12.03m, 宽2.35m, 高2.69m)。注意:单位要统一! 比如都用毫米(mm)或厘米(cm)。
- 物品表示: 每个家具是一个三维长方体,有长、宽、高。
- 旋转: 家具可以旋转摆放以更好地利用空间。一个长方体有最多6种基本朝向(不考虑绕垂直轴的90度旋转,因为那可以通过交换长宽实现)。
- 放置策略: 这是算法的关键。需要决定:
- 物品顺序: 先放大件还是小件?通常先放大件(如按体积或最长边排序)效果较好(First Fit Decreasing - FFD 变种)。
- 放置位置: 在容器的哪个位置放置物品?常用的策略是在可选空间中寻找"最合适"的位置,例如"最低-最左-最靠里"的角落。
- 空间管理: 如何记录和管理容器内的剩余空间?这可以很复杂。常见方法有:
- 层叠法(Layer-based): 一层一层地填充。
- 最大空间法(Maximal Spaces): 维护一个剩余空间块的列表。
- 三维坐标/体素法: 将容器空间离散化(计算量可能很大)。
- 简单坐标点法: 维护一组可以放置物品的"锚点"(通常是已放置物品的角点或容器的角点)。
- 算法流程 (启发式 - 基于 FFD 和锚点/最低位置策略):
- 初始化:
- 获取所有家具列表及其尺寸。
- 定义集装箱内部尺寸。
- 对家具列表进行排序(例如,按体积降序)。
- 创建一个空的集装箱列表。
- 主循环: 遍历排序后的家具列表:
- 对于当前家具
item
:- 尝试放入现有集装箱: 遍历当前已打开的集装箱列表
containers
。- 对于每个集装箱
container
:- 尝试找到一个有效位置放置
item
(考虑所有6种旋转)。 - 寻找位置 (启发式):
- 维护一个该容器内可放置物品的"锚点"列表
anchorPoints
(初始为 (0,0,0))。 - 按一定顺序(如 Z坐标升序, Y升序, X升序)遍历
anchorPoints
。 - 对每个锚点
p
,尝试item
的所有6种旋转r
。 - 检查
item
以旋转r
放置在p
时:- 是否完全在集装箱边界内?
- 是否与该集装箱内已放置的任何其他物品
placedItem
发生碰撞?
- 如果找到第一个有效的位置
(p, r)
:- 将
item
放置在container
的p
点,使用旋转r
。记录其位置和尺寸。 - 更新
container
的anchorPoints
:移除p
,并根据新放置的item
添加新的潜在锚点(例如,新物品的右上角、前上角、右前角等)。需要仔细处理,避免重复和无效点。 - 标记
item
已放置,跳出当前集装箱的尝试,处理下一个家具。
- 将
- 维护一个该容器内可放置物品的"锚点"列表
- 尝试找到一个有效位置放置
- 对于每个集装箱
- 如果现有集装箱都放不下:
- 创建一个新的集装箱
newContainer
。 - 将
item
放入newContainer
(通常放在 (0,0,0) 位置,选择一个合适的旋转)。必须检查: 如果物品本身就比集装箱大,则无法放置,需要报错。 - 记录放置信息,初始化
newContainer
的锚点列表。 - 将
newContainer
添加到containers
列表中。
- 创建一个新的集装箱
- 尝试放入现有集装箱: 遍历当前已打开的集装箱列表
- 对于当前家具
- 结束: 所有家具处理完毕后,
containers
列表的大小就是所需的集装箱数量。
- 初始化:
C# 代码框架:
csharp
using System;
using System.Collections.Generic;
using System.Linq;
// 3D Point/Vector Structure
public struct Point3D
{
public decimal X, Y, Z;
public Point3D(decimal x, decimal y, decimal z) { X = x; Y = y; Z = z; }
public override string ToString() => $"({X}, {Y}, {Z})";
}
// Dimensions Structure
public struct Dimensions
{
public decimal Length, Width, Height; // L, W, H correspond to X, Y, Z axes when placed
public decimal Volume => Length * Width * Height;
public Dimensions(decimal l, decimal w, decimal h) { Length = l; Width = w; Height = h; }
public override string ToString() => $"[{Length}x{Width}x{Height}]";
// Get dimensions for different rotations
public Dimensions GetRotation(int rotationType)
{
switch (rotationType)
{
case 0: return new Dimensions(Length, Width, Height); // LWH (XYZ)
case 1: return new Dimensions(Length, Height, Width); // LHW (XZY)
case 2: return new Dimensions(Width, Length, Height); // WLH (YXZ)
case 3: return new Dimensions(Width, Height, Length); // WHL (YZX)
case 4: return new Dimensions(Height, Length, Width); // HLW (ZXY)
case 5: return new Dimensions(Height, Width, Length); // HWL (ZYX)
default: throw new ArgumentOutOfRangeException(nameof(rotationType));
}
}
}
// Represents a furniture item
public class Item
{
public string Name { get; }
public Dimensions OriginalDimensions { get; }
public decimal Volume => OriginalDimensions.Volume;
// Potentially add weight, fragility, stacking constraints later
public Item(string name, decimal length, decimal width, decimal height)
{
Name = name;
// Ensure non-negative dimensions
OriginalDimensions = new Dimensions(
Math.Max(0, length),
Math.Max(0, width),
Math.Max(0, height)
);
}
public override string ToString() => $"{Name} {OriginalDimensions}";
}
// Represents an item placed inside a container
public class PlacedItem
{
public Item SourceItem { get; }
public Point3D Position { get; } // Bottom-Back-Left corner of the item in container coordinates
public Dimensions PlacedDimensions { get; } // Dimensions after rotation
// Bounding Box for collision detection
public Point3D MinCorner => Position;
public Point3D MaxCorner => new Point3D(Position.X + PlacedDimensions.Length, Position.Y + PlacedDimensions.Width, Position.Z + PlacedDimensions.Height);
public PlacedItem(Item sourceItem, Point3D position, Dimensions placedDimensions)
{
SourceItem = sourceItem;
Position = position;
PlacedDimensions = placedDimensions;
}
// AABB Collision Check
public bool Intersects(PlacedItem other)
{
return (this.MinCorner.X < other.MaxCorner.X && this.MaxCorner.X > other.MinCorner.X) &&
(this.MinCorner.Y < other.MaxCorner.Y && this.MaxCorner.Y > other.MinCorner.Y) &&
(this.MinCorner.Z < other.MaxCorner.Z && this.MaxCorner.Z > other.MinCorner.Z);
}
// Check if this item intersects with a potential placement
public bool Intersects(Point3D potentialPos, Dimensions potentialDims)
{
Point3D potMin = potentialPos;
Point3D potMax = new Point3D(potentialPos.X + potentialDims.Length, potentialPos.Y + potentialDims.Width, potentialPos.Z + potentialDims.Height);
return (this.MinCorner.X < potMax.X && this.MaxCorner.X > potMin.X) &&
(this.MinCorner.Y < potMax.Y && this.MaxCorner.Y > potMin.Y) &&
(this.MinCorner.Z < potMax.Z && this.MaxCorner.Z > potMin.Z);
}
}
// Represents a single container
public class Container
{
public int Id { get; }
public Dimensions Dimensions { get; }
public List<PlacedItem> PlacedItems { get; }
public List<Point3D> AnchorPoints { get; private set; } // Potential placement corners
// Keep track of occupied volume/space for heuristics? (Optional)
public Container(int id, decimal length, decimal width, decimal height)
{
Id = id;
Dimensions = new Dimensions(length, width, height);
PlacedItems = new List<PlacedItem>();
// Start with the main corner as the only anchor point
AnchorPoints = new List<Point3D> { new Point3D(0, 0, 0) };
}
// Tries to find a position and rotation to place the item
public bool TryPlaceItem(Item item, out PlacedItem placement)
{
placement = null;
// Sort anchor points: typically Z, Y, X ascending to fill bottom-up, left-right, back-front
var sortedAnchors = AnchorPoints.OrderBy(p => p.Z).ThenBy(p => p.Y).ThenBy(p => p.X).ToList();
foreach (Point3D anchor in sortedAnchors)
{
for (int rotationType = 0; rotationType < 6; rotationType++)
{
Dimensions rotatedDims = item.OriginalDimensions.GetRotation(rotationType);
// Check if item fits within container boundaries at this anchor
if (anchor.X + rotatedDims.Length <= Dimensions.Length &&
anchor.Y + rotatedDims.Width <= Dimensions.Width &&
anchor.Z + rotatedDims.Height <= Dimensions.Height)
{
// Check for collisions with already placed items
bool collision = false;
foreach (PlacedItem existingItem in PlacedItems)
{
// Simple AABB check
if (existingItem.Intersects(anchor, rotatedDims))
{
collision = true;
break;
}
}
if (!collision)
{
// Found a valid placement!
placement = new PlacedItem(item, anchor, rotatedDims);
return true; // Return the first valid placement found
}
}
}
}
return false; // Could not find a place for this item in this container
}
// Actually place the item and update anchors
public void PlaceItem(PlacedItem placement)
{
PlacedItems.Add(placement);
// Update anchor points - this is a crucial and potentially complex step
// A simple strategy: remove the used anchor and add new potential anchors
Point3D placedPos = placement.Position;
Dimensions placedDims = placement.PlacedDimensions;
// Remove the anchor point that was used for placement
AnchorPoints.RemoveAll(p => p.X == placedPos.X && p.Y == placedPos.Y && p.Z == placedPos.Z);
// Add new potential anchor points based on the corners of the placed item
// Only add points that are within the container bounds
// More sophisticated logic would check if these points are already covered or invalid
Point3D[] potentialNewAnchors = {
new Point3D(placedPos.X + placedDims.Length, placedPos.Y, placedPos.Z),
new Point3D(placedPos.X, placedPos.Y + placedDims.Width, placedPos.Z),
new Point3D(placedPos.X, placedPos.Y, placedPos.Z + placedDims.Height)
};
foreach (var newAnchor in potentialNewAnchors)
{
// Basic check: is it inside the container?
if (newAnchor.X < Dimensions.Length && newAnchor.Y < Dimensions.Width && newAnchor.Z < Dimensions.Height)
{
// Basic check: does it overlap with the item just placed? (Shouldn't if corners are correct)
// More advanced: check if it's inside *any* existing item or outside container
// Avoid duplicates
if (!AnchorPoints.Any(p => p.X == newAnchor.X && p.Y == newAnchor.Y && p.Z == newAnchor.Z))
{
// Further check: Is this point supported? (Simple heuristic: is Z>0 requires something below?)
// For simplicity now, just add if inside bounds and not duplicate.
AnchorPoints.Add(newAnchor);
}
}
}
// Optional: Refine anchor points - remove points that are now inside the newly placed item
// AnchorPoints.RemoveAll(p => IsInside(p, placement)); // Need IsInside check
// Optional: Sort anchors again if needed for the next TryPlaceItem call
// AnchorPoints = AnchorPoints.OrderBy(p => p.Z).ThenBy(p => p.Y).ThenBy(p => p.X).ToList();
}
// Helper to check if a point is strictly inside a placed item's volume
private bool IsInside(Point3D point, PlacedItem item)
{
return point.X > item.MinCorner.X && point.X < item.MaxCorner.X &&
point.Y > item.MinCorner.Y && point.Y < item.MaxCorner.Y &&
point.Z > item.MinCorner.Z && point.Z < item.MaxCorner.Z;
}
}
// The main packer class
public class Packer
{
public Dimensions ContainerDimensions { get; }
public Packer(decimal containerLength, decimal containerWidth, decimal containerHeight)
{
ContainerDimensions = new Dimensions(containerLength, containerWidth, containerHeight);
}
public List<Container> PackItems(List<Item> itemsToPack)
{
// 1. Sort items (e.g., by volume descending) - FFD heuristic
var sortedItems = itemsToPack.OrderByDescending(item => item.Volume).ToList();
List<Container> containers = new List<Container>();
int containerIdCounter = 1;
HashSet<Item> packedItems = new HashSet<Item>(); // Keep track of packed items
foreach (var item in sortedItems)
{
if (packedItems.Contains(item)) continue; // Should not happen with list processing, but safe check
bool placed = false;
// 2. Try placing in existing containers
foreach (var container in containers)
{
if (container.TryPlaceItem(item, out PlacedItem placement))
{
container.PlaceItem(placement);
Console.WriteLine($"Placed {item.Name} in Container {container.Id} at {placement.Position} with rotation {placement.PlacedDimensions}");
placed = true;
packedItems.Add(item);
break; // Move to the next item (First Fit)
}
}
// 3. If not placed, open a new container
if (!placed)
{
// Check if the item can fit in an empty container at all (any rotation)
bool fitsAnyhow = false;
PlacedItem initialPlacement = null;
for(int r=0; r<6; ++r)
{
var dims = item.OriginalDimensions.GetRotation(r);
if(dims.Length <= ContainerDimensions.Length &&
dims.Width <= ContainerDimensions.Width &&
dims.Height <= ContainerDimensions.Height)
{
initialPlacement = new PlacedItem(item, new Point3D(0,0,0), dims);
fitsAnyhow = true;
break;
}
}
if (fitsAnyhow)
{
Container newContainer = new Container(containerIdCounter++, ContainerDimensions.Length, ContainerDimensions.Width, ContainerDimensions.Height);
newContainer.PlaceItem(initialPlacement); // Place at (0,0,0) with the found rotation
containers.Add(newContainer);
packedItems.Add(item);
Console.WriteLine($"Opened Container {newContainer.Id} and placed {item.Name} at {initialPlacement.Position} with rotation {initialPlacement.PlacedDimensions}");
}
else
{
// Item is too large for the container
Console.WriteLine($"Error: Item {item.Name} ({item.OriginalDimensions}) is too large to fit in the container ({ContainerDimensions}).");
// Decide how to handle this - skip item, throw exception?
}
}
}
Console.WriteLine($"\nPacking complete. Total containers used: {containers.Count}");
return containers;
}
}
// Example Usage
public class Example
{
public static void Main(string[] args)
{
// --- Configuration ---
// Use internal dimensions of a 40ft High Cube container in cm
decimal containerL = 1203m;
decimal containerW = 235m;
decimal containerH = 269m; // Use decimal for potentially better precision with cm/mm
Console.WriteLine($"Using Container Dimensions: {containerL}cm x {containerW}cm x {containerH}cm");
// --- Furniture List (Example Data in cm) ---
List<Item> furniture = new List<Item>
{
// Sofas (L x W x H)
new Item("Sofa 1", 200m, 90m, 80m),
new Item("Sofa 2", 220m, 95m, 85m),
// Coffee Tables
new Item("Coffee Table 1", 120m, 60m, 45m),
new Item("Coffee Table 2", 100m, 100m, 40m),
// Chairs
new Item("Chair 1", 60m, 60m, 90m),
new Item("Chair 2", 60m, 60m, 90m),
new Item("Chair 3", 55m, 58m, 95m),
new Item("Chair 4", 55m, 58m, 95m),
// Larger item test
new Item("Wardrobe", 150m, 60m, 200m),
// More items
new Item("Bookshelf", 80m, 30m, 180m),
new Item("Side Table 1", 40m, 40m, 60m),
new Item("Side Table 2", 40m, 40m, 60m),
new Item("Ottoman", 70m, 70m, 40m),
// Add many more small items to test filling gaps
// ... (e.g., 20 small boxes 30x30x30)
// for (int i = 0; i < 20; i++) { furniture.Add(new Item($"Small Box {i+1}", 30m, 30m, 30m)); }
};
Console.WriteLine($"\nItems to pack ({furniture.Count} total):");
foreach(var item in furniture) Console.WriteLine($"- {item}");
// --- Packing ---
Packer packer = new Packer(containerL, containerW, containerH);
List<Container> resultContainers = packer.PackItems(furniture);
// --- Output Results ---
Console.WriteLine($"\n--- Packing Summary ---");
Console.WriteLine($"Total Containers Needed: {resultContainers.Count}");
for (int i = 0; i < resultContainers.Count; i++)
{
decimal packedVolume = resultContainers[i].PlacedItems.Sum(p => p.PlacedDimensions.Volume);
decimal totalVolume = resultContainers[i].Dimensions.Volume;
decimal utilization = totalVolume > 0 ? (packedVolume / totalVolume) * 100 : 0;
Console.WriteLine($"Container {resultContainers[i].Id}: Contains {resultContainers[i].PlacedItems.Count} items. Volume Utilization: {utilization:F2}%");
// Optionally print items in each container
// foreach(var placed in resultContainers[i].PlacedItems) {
// Console.WriteLine($" - {placed.SourceItem.Name} at {placed.Position} as {placed.PlacedDimensions}");
// }
}
}
}
关键点和改进方向:
- 单位一致性: 代码中使用
decimal
和厘米(cm)作为例子。确保所有输入尺寸和容器尺寸使用相同单位。 - 锚点管理:
PlaceItem
中更新锚点的逻辑非常基础。更高级的算法会更智能地管理剩余空间,例如使用Maximal Spaces或更复杂的锚点生成/消除规则,以避免产生无法使用的小碎片空间或无效锚点。 - 启发式选择:
- 排序: 按体积降序排序是常见的 FFD 启发式。也可以尝试按最长边、面积等排序。
- 锚点选择:
TryPlaceItem
中按 Z, Y, X 排序锚点尝试填充底部。可以尝试其他顺序。 - 旋转选择: 当前代码尝试所有6种旋转。可以根据锚点和周围空间优先尝试更"可能"成功的旋转。
- 性能: 对于大量物品,碰撞检测(
Intersects
)和锚点管理会成为瓶颈。可能需要空间分区数据结构(如 Octree)来加速碰撞检测。 - 稳定性/约束: 当前算法纯粹是几何装箱。没有考虑:
- 重量: 重物应在底部。
- 易碎性: 不能将重物压在易碎品上。
- 堆叠限制: 某些物品不能堆叠或只能承受有限的重量。
- 方向: 有些家具(如沙发)可能不能倒置或侧放。
- 这些约束需要添加到
Item
类和TryPlaceItem
的检查逻辑中,会显著增加复杂性。
- 最优性: 这个启发式算法不保证找到绝对最少的集装箱数量。更复杂的算法(如禁忌搜索、模拟退火、遗传算法)或精确算法(分支定界法,但非常慢)可能得到更好的结果,但实现难度大得多。
- 用户界面/输入: 实际应用中,需要从文件、数据库或UI读取家具列表和尺寸。
- 可视化: 输出放置坐标后,使用3D可视化工具展示装箱结果会非常有帮助。
这个框架提供了一个起点。根据实际需求的复杂性和对最优性的要求,可以进一步优化和扩展这个算法。