三维装箱问题(3D Bin Packing Problem, 3D-BPP)

提出问题

集装箱海运家具, 沙发, 茶几, 椅子等等, 有多少套家具,以及每个家具的长宽高都会告诉你.

把所有的家具都装进集装箱里, 要求通过算法算出一共需要多少集装箱.

  • 1.要考虑怎样装, 需要的集装箱才最少, 因为一个集装箱很贵的.
  • 2.要考虑怎样摆放, 占用的体积最小, 找最优解. 比如, 茶几和沙发摞在一起, 旁边还有空余的位置, 那是否还可以再塞个椅子进去。

你会怎样设计算法?

分解问题

这是一个典型的三维装箱问题(3D Bin Packing Problem, 3D-BPP),它是NP-hard问题,意味着没有已知的算法能在多项式时间内找到绝对最优解。因此,我们通常使用启发式算法(Heuristics)或近似算法来寻找一个足够好的解,即尽量少用集装箱。

以下是一个使用C#设计启发式算法的思路和代码框架:

核心思路:

  1. 容器选择: 通常海运有标准集装箱尺寸,如20GP, 40GP, 40HC。我们需要确定使用哪种尺寸的集装箱,或者允许算法选择混合使用(这会更复杂)。为简化,我们先假设使用同一种标准尺寸的集装箱,例如40HC(内尺寸约为:长12.03m, 宽2.35m, 高2.69m)。注意:单位要统一! 比如都用毫米(mm)或厘米(cm)。
  2. 物品表示: 每个家具是一个三维长方体,有长、宽、高。
  3. 旋转: 家具可以旋转摆放以更好地利用空间。一个长方体有最多6种基本朝向(不考虑绕垂直轴的90度旋转,因为那可以通过交换长宽实现)。
  4. 放置策略: 这是算法的关键。需要决定:
    • 物品顺序: 先放大件还是小件?通常先放大件(如按体积或最长边排序)效果较好(First Fit Decreasing - FFD 变种)。
    • 放置位置: 在容器的哪个位置放置物品?常用的策略是在可选空间中寻找"最合适"的位置,例如"最低-最左-最靠里"的角落。
    • 空间管理: 如何记录和管理容器内的剩余空间?这可以很复杂。常见方法有:
      • 层叠法(Layer-based): 一层一层地填充。
      • 最大空间法(Maximal Spaces): 维护一个剩余空间块的列表。
      • 三维坐标/体素法: 将容器空间离散化(计算量可能很大)。
      • 简单坐标点法: 维护一组可以放置物品的"锚点"(通常是已放置物品的角点或容器的角点)。
  5. 算法流程 (启发式 - 基于 FFD 和锚点/最低位置策略):
    • 初始化:
      • 获取所有家具列表及其尺寸。
      • 定义集装箱内部尺寸。
      • 对家具列表进行排序(例如,按体积降序)。
      • 创建一个空的集装箱列表。
    • 主循环: 遍历排序后的家具列表:
      • 对于当前家具 item:
        • 尝试放入现有集装箱: 遍历当前已打开的集装箱列表 containers
          • 对于每个集装箱 container:
            • 尝试找到一个有效位置放置 item(考虑所有6种旋转)。
            • 寻找位置 (启发式):
              • 维护一个该容器内可放置物品的"锚点"列表 anchorPoints(初始为 (0,0,0))。
              • 按一定顺序(如 Z坐标升序, Y升序, X升序)遍历 anchorPoints
              • 对每个锚点 p,尝试 item 的所有6种旋转 r
              • 检查 item 以旋转 r 放置在 p 时:
                • 是否完全在集装箱边界内?
                • 是否与该集装箱内已放置的任何其他物品 placedItem 发生碰撞?
              • 如果找到第一个有效的位置 (p, r)
                • item 放置在 containerp 点,使用旋转 r。记录其位置和尺寸。
                • 更新 containeranchorPoints:移除 p,并根据新放置的 item 添加新的潜在锚点(例如,新物品的右上角、前上角、右前角等)。需要仔细处理,避免重复和无效点。
                • 标记 item 已放置,跳出当前集装箱的尝试,处理下一个家具。
        • 如果现有集装箱都放不下:
          • 创建一个新的集装箱 newContainer
          • item 放入 newContainer(通常放在 (0,0,0) 位置,选择一个合适的旋转)。必须检查: 如果物品本身就比集装箱大,则无法放置,需要报错。
          • 记录放置信息,初始化 newContainer 的锚点列表。
          • newContainer 添加到 containers 列表中。
    • 结束: 所有家具处理完毕后,containers 列表的大小就是所需的集装箱数量。

C# 代码框架:

csharp 复制代码
using System;
using System.Collections.Generic;
using System.Linq;

// 3D Point/Vector Structure
public struct Point3D
{
    public decimal X, Y, Z;
    public Point3D(decimal x, decimal y, decimal z) { X = x; Y = y; Z = z; }
    public override string ToString() => $"({X}, {Y}, {Z})";
}

// Dimensions Structure
public struct Dimensions
{
    public decimal Length, Width, Height; // L, W, H correspond to X, Y, Z axes when placed
    public decimal Volume => Length * Width * Height;
    public Dimensions(decimal l, decimal w, decimal h) { Length = l; Width = w; Height = h; }
    public override string ToString() => $"[{Length}x{Width}x{Height}]";

    // Get dimensions for different rotations
    public Dimensions GetRotation(int rotationType)
    {
        switch (rotationType)
        {
            case 0: return new Dimensions(Length, Width, Height); // LWH (XYZ)
            case 1: return new Dimensions(Length, Height, Width); // LHW (XZY)
            case 2: return new Dimensions(Width, Length, Height); // WLH (YXZ)
            case 3: return new Dimensions(Width, Height, Length); // WHL (YZX)
            case 4: return new Dimensions(Height, Length, Width); // HLW (ZXY)
            case 5: return new Dimensions(Height, Width, Length); // HWL (ZYX)
            default: throw new ArgumentOutOfRangeException(nameof(rotationType));
        }
    }
}

// Represents a furniture item
public class Item
{
    public string Name { get; }
    public Dimensions OriginalDimensions { get; }
    public decimal Volume => OriginalDimensions.Volume;
    // Potentially add weight, fragility, stacking constraints later

    public Item(string name, decimal length, decimal width, decimal height)
    {
        Name = name;
        // Ensure non-negative dimensions
        OriginalDimensions = new Dimensions(
            Math.Max(0, length),
            Math.Max(0, width),
            Math.Max(0, height)
        );
    }

    public override string ToString() => $"{Name} {OriginalDimensions}";
}

// Represents an item placed inside a container
public class PlacedItem
{
    public Item SourceItem { get; }
    public Point3D Position { get; } // Bottom-Back-Left corner of the item in container coordinates
    public Dimensions PlacedDimensions { get; } // Dimensions after rotation

    // Bounding Box for collision detection
    public Point3D MinCorner => Position;
    public Point3D MaxCorner => new Point3D(Position.X + PlacedDimensions.Length, Position.Y + PlacedDimensions.Width, Position.Z + PlacedDimensions.Height);

    public PlacedItem(Item sourceItem, Point3D position, Dimensions placedDimensions)
    {
        SourceItem = sourceItem;
        Position = position;
        PlacedDimensions = placedDimensions;
    }

    // AABB Collision Check
    public bool Intersects(PlacedItem other)
    {
        return (this.MinCorner.X < other.MaxCorner.X && this.MaxCorner.X > other.MinCorner.X) &&
               (this.MinCorner.Y < other.MaxCorner.Y && this.MaxCorner.Y > other.MinCorner.Y) &&
               (this.MinCorner.Z < other.MaxCorner.Z && this.MaxCorner.Z > other.MinCorner.Z);
    }
     // Check if this item intersects with a potential placement
    public bool Intersects(Point3D potentialPos, Dimensions potentialDims)
    {
         Point3D potMin = potentialPos;
         Point3D potMax = new Point3D(potentialPos.X + potentialDims.Length, potentialPos.Y + potentialDims.Width, potentialPos.Z + potentialDims.Height);

        return (this.MinCorner.X < potMax.X && this.MaxCorner.X > potMin.X) &&
               (this.MinCorner.Y < potMax.Y && this.MaxCorner.Y > potMin.Y) &&
               (this.MinCorner.Z < potMax.Z && this.MaxCorner.Z > potMin.Z);
    }
}

// Represents a single container
public class Container
{
    public int Id { get; }
    public Dimensions Dimensions { get; }
    public List<PlacedItem> PlacedItems { get; }
    public List<Point3D> AnchorPoints { get; private set; } // Potential placement corners

    // Keep track of occupied volume/space for heuristics? (Optional)

    public Container(int id, decimal length, decimal width, decimal height)
    {
        Id = id;
        Dimensions = new Dimensions(length, width, height);
        PlacedItems = new List<PlacedItem>();
        // Start with the main corner as the only anchor point
        AnchorPoints = new List<Point3D> { new Point3D(0, 0, 0) };
    }

     // Tries to find a position and rotation to place the item
    public bool TryPlaceItem(Item item, out PlacedItem placement)
    {
        placement = null;

        // Sort anchor points: typically Z, Y, X ascending to fill bottom-up, left-right, back-front
        var sortedAnchors = AnchorPoints.OrderBy(p => p.Z).ThenBy(p => p.Y).ThenBy(p => p.X).ToList();

        foreach (Point3D anchor in sortedAnchors)
        {
            for (int rotationType = 0; rotationType < 6; rotationType++)
            {
                Dimensions rotatedDims = item.OriginalDimensions.GetRotation(rotationType);

                // Check if item fits within container boundaries at this anchor
                if (anchor.X + rotatedDims.Length <= Dimensions.Length &&
                    anchor.Y + rotatedDims.Width <= Dimensions.Width &&
                    anchor.Z + rotatedDims.Height <= Dimensions.Height)
                {
                    // Check for collisions with already placed items
                    bool collision = false;
                    foreach (PlacedItem existingItem in PlacedItems)
                    {
                        // Simple AABB check
                         if (existingItem.Intersects(anchor, rotatedDims))
                        {
                            collision = true;
                            break;
                        }
                    }

                    if (!collision)
                    {
                        // Found a valid placement!
                        placement = new PlacedItem(item, anchor, rotatedDims);
                        return true; // Return the first valid placement found
                    }
                }
            }
        }
        return false; // Could not find a place for this item in this container
    }

    // Actually place the item and update anchors
    public void PlaceItem(PlacedItem placement)
    {
        PlacedItems.Add(placement);

        // Update anchor points - this is a crucial and potentially complex step
        // A simple strategy: remove the used anchor and add new potential anchors
        Point3D placedPos = placement.Position;
        Dimensions placedDims = placement.PlacedDimensions;

        // Remove the anchor point that was used for placement
        AnchorPoints.RemoveAll(p => p.X == placedPos.X && p.Y == placedPos.Y && p.Z == placedPos.Z);

        // Add new potential anchor points based on the corners of the placed item
        // Only add points that are within the container bounds
        // More sophisticated logic would check if these points are already covered or invalid
        Point3D[] potentialNewAnchors = {
            new Point3D(placedPos.X + placedDims.Length, placedPos.Y, placedPos.Z),
            new Point3D(placedPos.X, placedPos.Y + placedDims.Width, placedPos.Z),
            new Point3D(placedPos.X, placedPos.Y, placedPos.Z + placedDims.Height)
        };

        foreach (var newAnchor in potentialNewAnchors)
        {
            // Basic check: is it inside the container?
            if (newAnchor.X < Dimensions.Length && newAnchor.Y < Dimensions.Width && newAnchor.Z < Dimensions.Height)
            {
                 // Basic check: does it overlap with the item just placed? (Shouldn't if corners are correct)
                 // More advanced: check if it's inside *any* existing item or outside container
                 // Avoid duplicates
                if (!AnchorPoints.Any(p => p.X == newAnchor.X && p.Y == newAnchor.Y && p.Z == newAnchor.Z))
                {
                     // Further check: Is this point supported? (Simple heuristic: is Z>0 requires something below?)
                     // For simplicity now, just add if inside bounds and not duplicate.
                    AnchorPoints.Add(newAnchor);
                }
            }
        }

        // Optional: Refine anchor points - remove points that are now inside the newly placed item
         // AnchorPoints.RemoveAll(p => IsInside(p, placement)); // Need IsInside check

        // Optional: Sort anchors again if needed for the next TryPlaceItem call
         // AnchorPoints = AnchorPoints.OrderBy(p => p.Z).ThenBy(p => p.Y).ThenBy(p => p.X).ToList();
    }

     // Helper to check if a point is strictly inside a placed item's volume
    private bool IsInside(Point3D point, PlacedItem item)
    {
        return point.X > item.MinCorner.X && point.X < item.MaxCorner.X &&
               point.Y > item.MinCorner.Y && point.Y < item.MaxCorner.Y &&
               point.Z > item.MinCorner.Z && point.Z < item.MaxCorner.Z;
    }
}


// The main packer class
public class Packer
{
    public Dimensions ContainerDimensions { get; }

    public Packer(decimal containerLength, decimal containerWidth, decimal containerHeight)
    {
        ContainerDimensions = new Dimensions(containerLength, containerWidth, containerHeight);
    }

    public List<Container> PackItems(List<Item> itemsToPack)
    {
        // 1. Sort items (e.g., by volume descending) - FFD heuristic
        var sortedItems = itemsToPack.OrderByDescending(item => item.Volume).ToList();

        List<Container> containers = new List<Container>();
        int containerIdCounter = 1;
        HashSet<Item> packedItems = new HashSet<Item>(); // Keep track of packed items

        foreach (var item in sortedItems)
        {
             if (packedItems.Contains(item)) continue; // Should not happen with list processing, but safe check

            bool placed = false;

            // 2. Try placing in existing containers
            foreach (var container in containers)
            {
                if (container.TryPlaceItem(item, out PlacedItem placement))
                {
                    container.PlaceItem(placement);
                    Console.WriteLine($"Placed {item.Name} in Container {container.Id} at {placement.Position} with rotation {placement.PlacedDimensions}");
                    placed = true;
                    packedItems.Add(item);
                    break; // Move to the next item (First Fit)
                }
            }

            // 3. If not placed, open a new container
            if (!placed)
            {
                // Check if the item can fit in an empty container at all (any rotation)
                bool fitsAnyhow = false;
                PlacedItem initialPlacement = null;
                for(int r=0; r<6; ++r)
                {
                    var dims = item.OriginalDimensions.GetRotation(r);
                    if(dims.Length <= ContainerDimensions.Length &&
                       dims.Width <= ContainerDimensions.Width &&
                       dims.Height <= ContainerDimensions.Height)
                       {
                            initialPlacement = new PlacedItem(item, new Point3D(0,0,0), dims);
                            fitsAnyhow = true;
                            break;
                       }
                }

                if (fitsAnyhow)
                {
                    Container newContainer = new Container(containerIdCounter++, ContainerDimensions.Length, ContainerDimensions.Width, ContainerDimensions.Height);
                    newContainer.PlaceItem(initialPlacement); // Place at (0,0,0) with the found rotation
                    containers.Add(newContainer);
                    packedItems.Add(item);
                    Console.WriteLine($"Opened Container {newContainer.Id} and placed {item.Name} at {initialPlacement.Position} with rotation {initialPlacement.PlacedDimensions}");
                }
                else
                {
                    // Item is too large for the container
                    Console.WriteLine($"Error: Item {item.Name} ({item.OriginalDimensions}) is too large to fit in the container ({ContainerDimensions}).");
                    // Decide how to handle this - skip item, throw exception?
                }
            }
        }

        Console.WriteLine($"\nPacking complete. Total containers used: {containers.Count}");
        return containers;
    }
}

// Example Usage
public class Example
{
    public static void Main(string[] args)
    {
        // --- Configuration ---
        // Use internal dimensions of a 40ft High Cube container in cm
        decimal containerL = 1203m;
        decimal containerW = 235m;
        decimal containerH = 269m; // Use decimal for potentially better precision with cm/mm
        Console.WriteLine($"Using Container Dimensions: {containerL}cm x {containerW}cm x {containerH}cm");


        // --- Furniture List (Example Data in cm) ---
        List<Item> furniture = new List<Item>
        {
            // Sofas (L x W x H)
            new Item("Sofa 1", 200m, 90m, 80m),
            new Item("Sofa 2", 220m, 95m, 85m),
            // Coffee Tables
            new Item("Coffee Table 1", 120m, 60m, 45m),
            new Item("Coffee Table 2", 100m, 100m, 40m),
            // Chairs
            new Item("Chair 1", 60m, 60m, 90m),
            new Item("Chair 2", 60m, 60m, 90m),
            new Item("Chair 3", 55m, 58m, 95m),
            new Item("Chair 4", 55m, 58m, 95m),
            // Larger item test
            new Item("Wardrobe", 150m, 60m, 200m),
             // More items
             new Item("Bookshelf", 80m, 30m, 180m),
             new Item("Side Table 1", 40m, 40m, 60m),
             new Item("Side Table 2", 40m, 40m, 60m),
             new Item("Ottoman", 70m, 70m, 40m),

             // Add many more small items to test filling gaps
             // ... (e.g., 20 small boxes 30x30x30)
             // for (int i = 0; i < 20; i++) { furniture.Add(new Item($"Small Box {i+1}", 30m, 30m, 30m)); }
        };

        Console.WriteLine($"\nItems to pack ({furniture.Count} total):");
        foreach(var item in furniture) Console.WriteLine($"- {item}");


        // --- Packing ---
        Packer packer = new Packer(containerL, containerW, containerH);
        List<Container> resultContainers = packer.PackItems(furniture);

        // --- Output Results ---
        Console.WriteLine($"\n--- Packing Summary ---");
        Console.WriteLine($"Total Containers Needed: {resultContainers.Count}");
        for (int i = 0; i < resultContainers.Count; i++)
        {
            decimal packedVolume = resultContainers[i].PlacedItems.Sum(p => p.PlacedDimensions.Volume);
            decimal totalVolume = resultContainers[i].Dimensions.Volume;
            decimal utilization = totalVolume > 0 ? (packedVolume / totalVolume) * 100 : 0;
            Console.WriteLine($"Container {resultContainers[i].Id}: Contains {resultContainers[i].PlacedItems.Count} items. Volume Utilization: {utilization:F2}%");
            // Optionally print items in each container
            // foreach(var placed in resultContainers[i].PlacedItems) {
            //     Console.WriteLine($"  - {placed.SourceItem.Name} at {placed.Position} as {placed.PlacedDimensions}");
            // }
        }
    }
}

关键点和改进方向:

  1. 单位一致性: 代码中使用 decimal 和厘米(cm)作为例子。确保所有输入尺寸和容器尺寸使用相同单位。
  2. 锚点管理: PlaceItem 中更新锚点的逻辑非常基础。更高级的算法会更智能地管理剩余空间,例如使用Maximal Spaces或更复杂的锚点生成/消除规则,以避免产生无法使用的小碎片空间或无效锚点。
  3. 启发式选择:
    • 排序: 按体积降序排序是常见的 FFD 启发式。也可以尝试按最长边、面积等排序。
    • 锚点选择: TryPlaceItem 中按 Z, Y, X 排序锚点尝试填充底部。可以尝试其他顺序。
    • 旋转选择: 当前代码尝试所有6种旋转。可以根据锚点和周围空间优先尝试更"可能"成功的旋转。
  4. 性能: 对于大量物品,碰撞检测(Intersects)和锚点管理会成为瓶颈。可能需要空间分区数据结构(如 Octree)来加速碰撞检测。
  5. 稳定性/约束: 当前算法纯粹是几何装箱。没有考虑:
    • 重量: 重物应在底部。
    • 易碎性: 不能将重物压在易碎品上。
    • 堆叠限制: 某些物品不能堆叠或只能承受有限的重量。
    • 方向: 有些家具(如沙发)可能不能倒置或侧放。
    • 这些约束需要添加到 Item 类和 TryPlaceItem 的检查逻辑中,会显著增加复杂性。
  6. 最优性: 这个启发式算法不保证找到绝对最少的集装箱数量。更复杂的算法(如禁忌搜索、模拟退火、遗传算法)或精确算法(分支定界法,但非常慢)可能得到更好的结果,但实现难度大得多。
  7. 用户界面/输入: 实际应用中,需要从文件、数据库或UI读取家具列表和尺寸。
  8. 可视化: 输出放置坐标后,使用3D可视化工具展示装箱结果会非常有帮助。

这个框架提供了一个起点。根据实际需求的复杂性和对最优性的要求,可以进一步优化和扩展这个算法。