为什么vllm能够加快大模型推理速度?

vLLM加速大模型推理的核心技术原理可分解为以下关键创新点:

一、‌内存管理革命:PagedAttention‌

KV Cache分页机制‌

将传统连续存储的KV Cache拆分为非连续内存页,类似操作系统内存分页管理,消除内存碎片并实现动态分配。13B模型单请求KV Cache从1.6GB降至可弹性扩展的块状存储

内存共享优化‌

相同前缀的请求(如多用户问相似问题)可共享KV Cache内存页,降低重复计算

二、‌计算流程重构‌

连续批处理(Continuous Batching)‌

动态合并不同进度的请求至同一批次,GPU利用率提升3倍以上

定制化CUDA Kernel‌

针对注意力计算设计专用内核,减少显存与计算单元间的数据搬运开销

三、‌分布式扩展能力‌

支持多GPU自动并行化,65B模型推理可通过张量并行拆分到8卡执行

与LangChain等框架深度集成,实现端到端流水线加速

四、‌性能实测对比‌

相比原生PyTorch实现,vLLM在7B模型上吞吐量提升4倍

延迟降低60%以上,尤其擅长处理长文本生成场景

该技术栈通过软硬件协同设计,将传统LLM推理的"内存墙"问题转化为可弹性扩展的资源调度问题。

相关推荐
weixin_4380774920 小时前
windows10安装WSL2 & ubuntu24.04中安装vLLM & vLLM中部署Qwen2.5-VL
llm·vllm·qwen2.5-vl
hu_nil1 天前
LLMOps-第十一周作业
python·vllm
deephub2 天前
vLLM 性能优化实战:批处理、量化与缓存配置方案
人工智能·python·大语言模型·1024程序员节·vllm
叶庭云2 天前
一文了解开源大语言模型文件结构,以 Hugging Face DeepSeek-V3.1 模型仓库为例
人工智能·大语言模型·hugging face·1024程序员节·llms·开源模型文件结构·deepseek-v3.1
九章云极AladdinEdu3 天前
大模型推理服务优化:vLLM的PagedAttention与连续批处理实现
vllm·kv缓存·推理优化·pagedattention·连续批处理·吞吐量对比
羊城迷鹿4 天前
华为昇腾NPU驱动问题排查与vLLM部署踩坑记录
昇腾·npu·vllm
DO_Community4 天前
普通服务器都能跑:深入了解 Qwen3-Next-80B-A3B-Instruct
人工智能·开源·llm·大语言模型·qwen
文火冰糖的硅基工坊6 天前
[人工智能-大模型-15]:大模型典型产品对比 - 数字人
人工智能·大模型·大语言模型
MJJ_7 天前
从零构建大模型 Build a large language model from scratch by Sebastian Raschka 阅读笔记
大语言模型·读书笔记·ai学习
deephub9 天前
REFRAG技术详解:如何通过压缩让RAG处理速度提升30倍
人工智能·python·大语言模型·rag