docker部署MinerU web api

MinerU能够将包含图片、公式、表格等元素的多模态PDF、PPT、DOCX等文档转化为易于分析的Markdown格式。

1 克隆MinerU的仓库

shell 复制代码
git clone https://github.com/opendatalab/MinerU.git

2 cd到projects/web-api

shell 复制代码
cd projects/web-api

3 在可以科学上网的情况下可以直接运行

shell 复制代码
docker build -t mineru-api .

4 如果不能科学上网,使用modelscope

修改requirement.txt,添加modelscope==1.25.0 ![[Pasted image 20250429165051.png]] 修改download_models.py,删掉所有旧代码,改成这个

python 复制代码
#!/usr/bin/env python
import os
from modelscope.hub.snapshot_download import snapshot_download

# 配置模型下载路径(Windows路径示例:r'C:\MinerU')
MAIN_MODEL_DIR = "/opt/"
os.makedirs(MAIN_MODEL_DIR, exist_ok=True)

if __name__ == "__main__":
    # PDF-Extract-Kit的模型下载(需替换为ModelScope对应ID)
    pdf_extract_patterns = [
        "models/Layout/YOLO/**",
        "models/MFD/YOLO/**",
        "models/MFR/unimernet_hf_small_2503/**",
        "models/OCR/paddleocr_torch/**",
    ]
    pdf_model_path = snapshot_download(
        'opendatalab/PDF-Extract-Kit-1.0',  # ModelScope模型ID
        allow_patterns=pdf_extract_patterns,
        cache_dir=os.path.join(MAIN_MODEL_DIR, "models"),
        revision='master'  # 指定模型版本
    )

    # LayoutReader模型下载(需替换为ModelScope对应模型)
    layout_model_path = snapshot_download(
        'ppaanngggg/layoutreader',  # 替换为实际ModelScope ID
        cache_dir=os.path.join(MAIN_MODEL_DIR, "layoutreader"),
        allow_patterns=["*.json", "*.safetensors"]
    )

    print(f"主模型目录:{pdf_model_path}")
    print(f"布局模型目录:{layout_model_path}")

再运行docker build -t mineru-api .

5 编写docker-compose.yml

yml 复制代码
services:
  mineru-api:
    image: mineru-api
    ports:
      - "8000:8000"
    stdin_open: true   # 对应 -i 参数
    tty: true          # 对应 -t 参数
    runtime: nvidia    # 使用 NVIDIA 容器运行时
    environment:
      - NVIDIA_VISIBLE_DEVICES=all  # 允许访问所有 GPU

6 如果没有nvidia的runtime,先备份自己的daemon.json文件(/etc/docker/),通过yum install -y nvidia-docker2安装,这个命令会生成一个新的daemon.json文件,覆盖掉原来旧的,安装后之后比较一下新旧两个daemon文件,合并在一起。

7 启动

shell 复制代码
systemctl daemon-reload
systemctl restart docker
docker compose up -d

8 访问localhost:8000/docs

相关推荐
MM_MS5 分钟前
Halcon控制语句
java·大数据·前端·数据库·人工智能·算法·视觉检测
桂花饼9 分钟前
基于第三方中转的高效 Sora-2 接口集成方案
人工智能·aigc·ai视频生成·gemini 3 pro·gpt-5.2·ai绘画4k·sora_video2
golang学习记13 分钟前
Zed 编辑器的 6 个隐藏技巧:提升开发效率的「冷知识」整理
人工智能
武汉大学-王浩宇22 分钟前
LLaMa-Factory的继续训练(Resume Training)
人工智能·机器学习
weisian15125 分钟前
入门篇--知名企业-28-字节跳动-2--字节跳动的AI宇宙:从技术赋能到生态共建的深度布局
人工智能·字节跳动·扣子·豆包
NGBQ1213835 分钟前
原创餐饮店铺图片数据集:344张高质量店铺图像助力商业空间识别与智能分析的专业数据集
人工智能
FIT2CLOUD飞致云36 分钟前
应用升级为智能体,模板中心上线,MaxKB开源企业级智能体平台v2.5.0版本发布
人工智能·ai·开源·1panel·maxkb
haiyu_y42 分钟前
Day 58 经典时序模型 2(ARIMA / 季节性 / 残差诊断)
人工智能·深度学习·ar
peixiuhui1 小时前
突破边界!RK3576边缘计算网关:为工业智能注入“芯”动力
人工智能·物联网·边缘计算·rk3588·iot·rk3568·rk3576
想你依然心痛1 小时前
鲲鹏+昇腾:开启 AI for Science 新范式——基于PINN的流体仿真加速实践
人工智能·鲲鹏·昇腾