【文档智能】开源的阅读顺序(Layoutreader)模型使用指南

一年前,笔者基于开源了一个阅读顺序模型(《【文档智能】符合人类阅读顺序的文档模型-LayoutReader及非官方权重开源》),

PDF解析并结构化技术路线方案及思路文档智能专栏

阅读顺序检测旨在捕获人类读者能够自然理解的单词序列。现有的OCR引擎通常按照从上到下、从左到右的方式排列识别到的文本行,但这并不适用于某些文档类型,如多栏模板、表格等。LayoutReader模型使用seq2seq模型捕获文本和布局信息,用于阅读顺序预测,在实验中表现出色,并显著提高了开源和商业OCR引擎在文本行排序方面的表现。

Github:https://github.com/yujunhuics/LayoutReader

权重地址:https://www.modelscope.cn/models/yujunhuinlp/LayoutReader-only-layout-large

有伙伴私信不知如何使用,笔者通过版式分析的结果,后接开源笔者开源的模型,完善这个技术链路。供参考。先看效果:

详细代码已上传:https://github.com/yujunhuics/LayoutReader/blob/main/vis.py

python 复制代码
#!/usr/bin/env python
# _*_coding:utf-8_*_
# Author   :    Junhui Yu

from ultralytics import YOLO
import cv2
import torch
from model import LayoutLMv3ForBboxClassification
from collections import defaultdict

CLS_TOKEN_ID = 0
UNK_TOKEN_ID = 3
EOS_TOKEN_ID = 2


def BboxesMasks(boxes):
    bbox = [[0, 0, 0, 0]] + boxes + [[0, 0, 0, 0]]
    input_ids = [CLS_TOKEN_ID] + [UNK_TOKEN_ID] * len(boxes) + [EOS_TOKEN_ID]
    attention_mask = [1] + [1] * len(boxes) + [1]
    return {
        "bbox": torch.tensor([bbox]),
        "attention_mask": torch.tensor([attention_mask]),
        "input_ids": torch.tensor([input_ids]),
    }


def decode(logits, length):
    logits = logits[1: length + 1, :length]
    orders = logits.argsort(descending=False).tolist()
    ret = [o.pop() for o in orders]
    while True:
        order_to_idxes = defaultdict(list)
        for idx, order in enumerate(ret):
            order_to_idxes[order].append(idx)
        order_to_idxes = {k: v for k, v in order_to_idxes.items() if len(v) > 1}
        if not order_to_idxes:
            break
        for order, idxes in order_to_idxes.items():
            idxes_to_logit = {}
            for idx in idxes:
                idxes_to_logit[idx] = logits[idx, order]
            idxes_to_logit = sorted(
                idxes_to_logit.items(), key=lambda x: x[1], reverse=True
            )
            for idx, _ in idxes_to_logit[1:]:
                ret[idx] = orders[idx].pop()
    return ret


def layoutreader(bboxes):
    inputs = BboxesMasks(bboxes)
    logits = layoutreader_model(**inputs).logits.cpu().squeeze(0)
    orders = decode(logits, len(bboxes))
    return orders


# report label
# id2name = {
#     0: 'Text',
#     1: 'Title',
#     2: 'Header',
#     3: 'Footer',
#     4: 'Figure',
#     5: 'Table',
#     6: 'Toc',
#     7: 'Figure caption',
#     8: 'Table caption',
#     9: 'Equation',
#     10: 'Footnote'
# }

# paper label
id2name = {
    0: 'Text',
    1: 'Title',
    2: 'Figure',
    3: 'Figure caption',
    4: 'Table',
    5: 'Table caption',
    6: 'Header',
    7: 'Footer',
    8: 'Reference',
    9: 'Equation'
}

color_map = {
    'Text': (255, 0, 255),
    'Title': (0, 255, 0),
    'Header': (125, 125, 0),
    'Footer': (255, 255, 0),
    'Figure': (0, 0, 255),
    'Table': (160, 32, 240),
    'Toc': (199, 97, 20),
    'Figure caption': (255, 90, 50),
    'Table caption': (255, 128, 0),
    'Equation': (255, 123, 123),
    'Footnote': (222, 110, 0)
}

image_path = 'page_4.png'


model_path = "./LayoutReader-only-layout-large"
# 下载地址:https://modelscope.cn/models/yujunhuinlp/LayoutReader-only-layout-large

layoutreader_model = LayoutLMv3ForBboxClassification.from_pretrained(model_path)

layout_model = YOLO('paper-8n.pt')
# 下载地址:https://huggingface.co/qihoo360/360LayoutAnalysis
# layout_model = YOLO('report-8n.pt')

result = layout_model(image_path, save=False, conf=0.45, save_crop=False, line_width=1)
print(result)

img = cv2.imread(image_path)
page_h, page_w = img.shape[:2]

x_scale = 1000.0 / page_w
y_scale = 1000.0 / page_h

bbox_cls = result[0].boxes.cls.tolist()
xyxyes = result[0].boxes.xyxy.tolist()
confes = result[0].boxes.conf.tolist()
print(xyxyes)

boxes = []
for left, top, right, bottom in xyxyes:
    if left < 0:
        left = 0
    if right > page_w:
        right = page_w
    if top < 0:
        top = 0
    if bottom > page_h:
        bottom = page_h

    left = round(left * x_scale)
    top = round(top * y_scale)
    right = round(right * x_scale)
    bottom = round(bottom * y_scale)
    assert (
            1000 >= right >= left >= 0 and 1000 >= bottom >= top >= 0), \
        f'Invalid box. right: {right}, left: {left}, bottom: {bottom}, top: {top}'
    boxes.append([left, top, right, bottom])

print(boxes)
orders = layoutreader(boxes)
print(orders)
xyxyes = [xyxyes[i] for i in orders]
bbox_cls = [bbox_cls[i] for i in orders]
confes = [confes[i] for i in orders]
print(xyxyes)

for idx, b_cls, xyxy, conf in zip(range(len(xyxyes)), bbox_cls, xyxyes, confes):
    top_left_x, top_left_y, bottom_right_x, bottom_right_y = xyxy[0], xyxy[1], xyxy[2], xyxy[3]
    cv2.rectangle(img, (int(top_left_x), int(top_left_y)), (int(bottom_right_x), int(bottom_right_y)),
                  color_map[id2name[b_cls]],
                  2)
    cv2.putText(img, f"reader:{idx}--" + id2name[b_cls] + ":" + str(round(conf, 2)),
                (int(top_left_x), int(top_left_y) + 5),
                cv2.FONT_HERSHEY_SIMPLEX,
                1,
                color_map[id2name[b_cls]], 3)  # Add label text
cv2.imwrite("vis-result.jpg", img)
相关推荐
写代码的中青年9 个月前
DIfy中集成magic-pdf实现文档解析agent与多模态大模型图文问答
人工智能·python·pdf·大模型·llm·文档智能·图文rag
余俊晖10 个月前
【文档智能】LACE:帮你自动生成文档布局的方法浅尝
llm·nlp·多模态·文档智能
余俊晖1 年前
【文档智能 & RAG】RAG增强之路-智能文档解析关键技术难点及PDF解析工具PDFlux
rag·文档智能·文档解析·pdflux
余俊晖1 年前
【文档智能 & RAG】RAG增强之路:增强PDF解析并结构化技术路线方案及思路
自然语言处理·pdf·rag·文档智能
余俊晖1 年前
【文档智能】符合人类阅读顺序的文档模型-LayoutReader原理及权重开源
深度学习·多模态·文档智能·阅读顺序
余俊晖2 年前
【文档智能】多模态预训练模型及相关数据集汇总
预训练模型·多模态·文档智能