常规练手,图片搜索山寨版。拜读罗云大佬著作,结果只有操作层的东西可以上上手。
书中是自己写的向量数据库,这边直接用python拼个现成的milvus向量数据库。
- 创建一个向量数据库以及对应的相应数据表:
python
# Milvus Setup Arguments
COLLECTION_NAME = 'animal_search'
DIMENSION = 2048
MILVUS_HOST = "localhost"
MILVUS_PORT = "19530"
# Inference Arguments
BATCH_SIZE = 128
from pymilvus import connections
# Connect to the instance
connections.connect(host=MILVUS_HOST,port=MILVUS_PORT)
from pymilvus import utility
# Remove any previous collection with the same name
if utility.has_collection(COLLECTION_NAME):
utility.drop_collection(COLLECTION_NAME)
#创建保存ID、图片文件路径及Embeddings的Collection。
from pymilvus import FieldSchema, CollectionSchema, DataType, Collection
fields = [
FieldSchema(name='id',dtype=DataType.INT64, is_primary=True, auto_id=True),
FieldSchema(name='filepath', dtype=DataType.VARCHAR,max_length=200),
FieldSchema(name='image_embedding',dtype=DataType.FLOAT_VECTOR,dim=DIMENSION)
]
schema = CollectionSchema(fields=fields)
collection = Collection(name=COLLECTION_NAME, schema=schema)
index_params = {
'metric_type':'L2',
'index_type': "IVF_FLAT",
'params':{'nlist':16384}
}
collection.create_index(field_name="image_embedding",index_params=index_params)
collection.load()
- 写一堆图片进去存着,向量其实就是各种像素间的维度特征,
python
# Milvus Setup Arguments
COLLECTION_NAME = 'animal_search'
DIMENSION = 2048
MILVUS_HOST = "localhost"
MILVUS_PORT = "19530"
# Inference Arguments
BATCH_SIZE = 128
from pymilvus import connections
# Connect to the instance
connections.connect(host=MILVUS_HOST, port=MILVUS_PORT)
import glob
paths = glob.glob('/mcm/vectorDB_training/animals_db/*',recursive=True)
#分批预处理数据
import torch
# Load the embedding model with the last layer removed
model = torch.hub.load('pytorch/vision:v0.10.0', 'resnet50', pretrained=True)
model = torch.nn.Sequential(*(list(model.children())[:-1]))
model.eval()
from torchvision import transforms
# Preprocessing for images
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485,0.456,0.406],std=[0.229,0.224,0.225])
])
#插入数据
from PIL import Image
from tqdm import tqdm
# Embed function that embeds the batch and inserts it
def embed(data):
from pymilvus import FieldSchema, CollectionSchema, DataType, Collection
fields = [
FieldSchema(name='id',dtype=DataType.INT64, is_primary=True, auto_id=True),
FieldSchema(name='filepath', dtype=DataType.VARCHAR,max_length=200),
FieldSchema(name='image_embedding',dtype=DataType.FLOAT_VECTOR,dim=DIMENSION)
]
schema = CollectionSchema(fields=fields)
collection = Collection(name=COLLECTION_NAME, schema=schema)
with torch.no_grad():
output = model(torch.stack(data[0])).squeeze()
collection.insert([data[1],output.tolist()])
collection.flush()
data_batch = [[],[]]
# Read the images into batches for embedding and insertion
for path in tqdm(paths):
im = Image.open(path).convert('RGB')
data_batch[0].append(preprocess(im))
data_batch[1].append(path)
if len(data_batch[0]) % BATCH_SIZE == 0:
embed(data_batch)
data_batch = [[],[]]
# Embed and insert the remainder
if len(data_batch[0]) != 0:
embed(data_batch)
- 向量化图片的函数要单独拎出来,做搜索功能的时候用它。
python
import torch
import torchvision.transforms as transforms
from torchvision.models import resnet50
from PIL import Image
def extract_features(image_path):
# 加载预训练的 ResNet-50 模型
model = resnet50(pretrained=True)
model = torch.nn.Sequential(*list(model.children())[:-1]) #移除fc层,不移除,向量最后就是1000层,而不是2048
model.eval()
# 图像预处理
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
# 读取图像
img = Image.open(image_path)
img_t = preprocess(img)
batch_t = torch.unsqueeze(img_t, 0)
# 提取特征
with torch.no_grad():
out = model(batch_t)
# 将特征向量转换为一维数组并返回
return out.flatten().numpy()
- 用flask做的界面
python
from flask import Flask,request,jsonify
from flask import render_template
from image_eb import extract_features
#from pymilvus import connections
from pymilvus import MilvusClient
import logging
import os
import shutil
MILVUS_HOST = "localhost"
MILVUS_PORT = "19530"
COLLECTION_NAME = 'animal_search'
TOP_K = 3
app = Flask(__name__)
milvus_client = MilvusClient(uri="http://localhost:19530")
@app.route("/")
def index():
return render_template("index.html")
@app.route("/upload",methods=["POST"])
def upload_image():
image_file = request.files["image"]
image_id_str = request.form.get("image_id")
data = []
#检查image_id是否存在。
if not image_id_str:
return jsonify({"message": "Image ID is required"}),400
#image id转化为整型
try:
image_id = int(image_id_str)
data.append(image_id)
except ValueError:
return jsonify({"message": "Invalid image ID. It must be an integer"}),400
filename = image_file.filename
image_path = os.path.join("static/images",image_id_str)
image_file.save(image_path)
image_features = extract_features(image_path)
data.append(image_features)
data_dict = dict(filepath=image_path,image_embedding=data[1])
#更新数据库中记录
milvus_client.insert(collection_name=COLLECTION_NAME,data=[data_dict])
return jsonify({"message": "Image uploaded successfully", "id": image_id})
@app.route("/search",methods=["POST"])
def search_image():
image_file = request.files["image"]
image_path = os.path.join("static/images","temp_image.jpg")
image_file.save(image_path)
image_features = extract_features(image_path)
data_li = [extract_features(image_path).tolist()]
search_result = milvus_client.search(
collection_name=COLLECTION_NAME,
data=data_li,
output_fields=["filepath"],
limit=TOP_K,
search_params={'metric_type': 'L2', 'params': {}},
)
dict_search_result = search_result[0]
arr_search_result = []
destination_folder = '/mcm/vectorDB_training/static/images'
for index,value in enumerate(dict_search_result):
source_file = value["entity"]["filepath"]
base_file_name = os.path.basename(source_file)
destination_file = os.path.join(destination_folder, base_file_name)
shutil.copy(source_file, destination_file)
key_file_name = os.path.join("/static/images",base_file_name)
arr_search_result.append(key_file_name)
image_urls = [
f"{filepath}" for filepath in arr_search_result
]
return jsonify({"image_urls":image_urls})
if __name__=="__main__":
app.run(host='0.0.0.0',port=5020,debug=True)
小网站结构,以及其他杂代码,可以查看以及直接下载:https://www.ituring.com.cn/book/3305