【OpenCV基础 1】几何变换、形态学处理、阈值分割、区域提取和脱敏处理

目录

一、图像几何变化

1、对图片进行放大、缩小、水平放大和垂直放大

2、旋转、缩放、控制画布大小

二、图像形态学处理

1、梯度运算

2、闭运算

3、礼帽运算

4、黑帽运算

三、图像阈值分割

1、二值化处理

2、反二值化处理

3、截断阈值处理

4、超阈值零处理

5、低阈值零处理

6、自适应阈值处理

7、Otsu处理

四、图像处理基础

1、感兴趣区域的提取

2、人脸部分进行脱敏处理


一、图像几何变化

我们以lena图片作为素材

1、对图片进行放大、缩小、水平放大和垂直放大

python 复制代码
import cv2
import numpy as np

'''1、将lena_color.jpg 放大到600*600
2、将lena_color.jgp 缩小到50*50
3、将lena_color.jgp 在水平方向放大到2位,垂直方向放大到1.5倍
4、将以上所有图像进行显示。'''

img = cv2.imread('project_demo/class_picture/lena_color.jpg')
img1 = cv2.resize(img, (600, 600))
img2 = cv2.resize(img, (50, 50))
img3 = cv2.resize(img, (0, 0), fx=2, fy=1.5)
cv2.imshow('img1', img1)
cv2.imshow('img2', img2)
cv2.imshow('img3', img3)
cv2.waitKey(0)
cv2.destroyAllWindows()

2、旋转、缩放、控制画布大小

python 复制代码
'''
将lena_color.jpg
     a、以图像中心为旋转中心,顺时针旋转60度,
     b、图像缩小为原来的0.4,
     c、画布大小为原始图像大小。
再将图像进行平移至原始图像的(0,0)->变换后图像的(50,25)
'''
from tkinter import W
import cv2
import numpy as np
# 读取图像
img = cv2.imread('project_demo/class_picture/lena_color.jpg')
# 图像旋转
h, w = img.shape[:2]    # 获取图像的宽高
M = cv2.getRotationMatrix2D((w / 2, h / 2), -60, scale=0.4) # 获取旋转矩阵
rotated1 = cv2.warpAffine(img, M, (w, h))   # 进行旋转
cv2.imshow('rotated1', rotated1)
# 图像平移
src = np.float32([[0, 0], [0, w-1], [h-1, 0]])  # 获取原始图像的三个点
dst = np.float32([[50, 25], [50, w + 25], [h + 50, 25]])    # 获取变换后的三个点
M2 = cv2.getAffineTransform(src, dst)   # 获取仿射变换矩阵
rotated2 = cv2.warpAffine(rotated1, M2, (w, h)) # 进行仿射变换
cv2.imshow('rotated2', rotated2)

cv2.waitKey(0)
cv2.destroyAllWindows()

效果图:

二、图像形态学处理

1、梯度运算

python 复制代码
import cv2
import numpy as np

# 形态学梯度运算
image = cv2.imread('project_demo/class_picture/gradient.bmp')
kernel = np.ones((3, 3), np.uint8)
gradient_image = cv2.morphologyEx(image, cv2.MORPH_GRADIENT, kernel)
cv2.imshow('Original Image', image)
cv2.imshow('Gradient Image', gradient_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

2、闭运算

python 复制代码
image = cv2.imread('project_demo/class_picture/gradient.bmp')
kernel = np.ones((3, 3), np.uint8)
closing_image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel)
cv2.imshow('Original Image', image)
cv2.imshow('Closing Image', closing_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

3、礼帽运算

python 复制代码
image = cv2.imread('project_demo/class_picture/lena.bmp')
image2 = cv2.imread('project_demo/class_picture/gradient.bmp')
kernel = np.ones((3, 3), np.uint8)
tophat_image = cv2.morphologyEx(image, cv2.MORPH_TOPHAT, kernel)
tophat_image2 = cv2.morphologyEx(image2, cv2.MORPH_TOPHAT, kernel)
cv2.imshow('Original Image', image)
cv2.imshow('Top Hat Image', tophat_image)
cv2.imshow('Original Image2', image2)
cv2.imshow('Top Hat Image2', tophat_image2)
cv2.waitKey(0)
cv2.destroyAllWindows()

4、黑帽运算

python 复制代码
image = cv2.imread('project_demo/class_picture/lena.bmp')
image2 = cv2.imread('project_demo/class_picture/gradient.bmp')
kernel = np.ones((3, 3), np.uint8)
blackhat_image = cv2.morphologyEx(image, cv2.MORPH_BLACKHAT, kernel)
blackhat_image2 = cv2.morphologyEx(image2, cv2.MORPH_BLACKHAT, kernel)
cv2.imshow('Original Image', image)
cv2.imshow('Black Hat Image', blackhat_image)
cv2.imshow('Original Image2', image2)
cv2.imshow('Black Hat Image2', blackhat_image2)
cv2.waitKey(0)
cv2.destroyAllWindows()

三、图像阈值分割

1、二值化处理

python 复制代码
import numpy as np

img = cv2.imread('project_demo/class_picture/lena_gray.jpg')
# 二进制阈值化,设阈值127
retval, dst = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
cv2.imshow('img', img)
cv2.imshow('dst', dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

2、反二值化处理

python 复制代码
# 反二进制阈值化,设阈值127
retval, dst = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV)
cv2.imshow('img', img)
cv2.imshow('dst', dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

3、截断阈值处理

python 复制代码
retval, dst = cv2.threshold(img, 127, 255, cv2.THRESH_TRUNC)
cv2.imshow('img', img)
cv2.imshow('dst', dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

4、超阈值零处理

python 复制代码
# 超阈值化零处理,设阈值127
retval, dst = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO)
cv2.imshow('img', img)
cv2.imshow('dst', dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

5、低阈值零处理

python 复制代码
# 低阈值零处理,设阈值127
retval, dst = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO_INV)
cv2.imshow('img', img)
cv2.imshow('dst', dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

6、自适应阈值处理

python 复制代码
# 自适应阈值处理
dst = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)
cv2.imshow('img', img)
cv2.imshow('dst', dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

7、Otsu处理

python 复制代码
# Otsu处理
retval, dst = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
cv2.imshow('img', img)
cv2.imshow('dst', dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

四、图像处理基础

1、感兴趣区域的提取

步骤:

① 读取一张图像,如果成功读取,则显示该图像,如果读取失败,则显示"The file is not exist"

② 读取图像

③ 对兴趣区域提取

python 复制代码
'''
对兴趣区域提取
1.读取一张图像,如果成功读取,则显示该图像,如果读取失败,则显示"The file is not exist"
2.读取图像
3.对兴趣区域提取
'''
import cv2
import matplotlib.pyplot as plt
def show_plt():
    iamge_path = 'project_demo/class_picture/kongfu_panda.jpg'
    image = plt.imread(iamge_path)
    plt.imshow(image)
    plt.axis('off')
    plt.show()
def main():
    img = cv2.imread('project_demo/class_picture/kongfu_panda.jpg')
    if img is None:
        print('The file is not exist')
    else:
        # 提取兴趣区域
        img1 = img[70:325, 48:221]
        img2 = img[83:471, 377:592]
        img3 = img[259:481, 621:737]
        cv2.imshow('img1', img1)
        cv2.imshow('img2', img2)
        cv2.imshow('img3', img3)
        cv2.waitKey(0)
        cv2.destroyAllWindows()
if __name__ == '__main__':
    show_plt()
    main()

2、人脸部分进行脱敏处理

python 复制代码
'''
对海报的人脸部分进行脱敏处理

'''
import cv2
import matplotlib.pyplot as plt
import numpy as np

def show_plt():
    iamge_path = 'project_demo/class_picture/kongfu_panda.jpg'
    image = plt.imread(iamge_path)
    plt.imshow(image)
    plt.axis('off')
    plt.show()
def main():
    img = cv2.imread('project_demo/class_picture/police_story.png')
    cv2.namedWindow('image', cv2.WINDOW_NORMAL)
    cv2.resizeWindow('image', 500, 500)
    if img is None:
        print('The file is not exist')
    else:
        face = np.random.randint(0, 255, (600, 445, 3))
        img[50:650, 364:809, :] = face
        cv2.imshow('image', img)
        cv2.waitKey(0)
        cv2.destroyAllWindows()
if __name__ == '__main__':
    #show_plt
    main()
相关推荐
qidun2107 分钟前
埃夫特机器人防护服使用范围详解-避免十大应用误区
网络·人工智能
Σίσυφος19009 分钟前
PCL Point-to-Point ICP详解
人工智能·算法
PaperRed ai写作降重助手24 分钟前
AI 论文写作工具排名(实测不踩坑)
人工智能·aigc·ai写作·论文写作·智能降重·辅助写作·降重复率
ktoking24 分钟前
Stock Agent AI 模型的选股器实现 [五]
人工智能·python
qwy71522925816328 分钟前
10-图像的翻转
人工智能·opencv·计算机视觉
霍格沃兹测试学院-小舟畅学29 分钟前
Playwright企业级测试架构设计:模块化与可扩展性
人工智能·测试工具
卡奥斯开源社区官方34 分钟前
深度拆解:Clawdbot“集体永生”技术内核,是AI协同突破还是营销噱头?
人工智能
小W与影刀RPA37 分钟前
【影刀 RPA】 :文档敏感词批量替换,省时省力又高效
人工智能·python·低代码·自动化·rpa·影刀rpa
小咖自动剪辑1 小时前
12306余票监控辅助工具详解:自动查询/多方案预约/到点提交
人工智能
得赢科技1 小时前
智能菜谱研发公司推荐 适配中小型餐饮
大数据·运维·人工智能