【OpenCV基础 1】几何变换、形态学处理、阈值分割、区域提取和脱敏处理

目录

一、图像几何变化

1、对图片进行放大、缩小、水平放大和垂直放大

2、旋转、缩放、控制画布大小

二、图像形态学处理

1、梯度运算

2、闭运算

3、礼帽运算

4、黑帽运算

三、图像阈值分割

1、二值化处理

2、反二值化处理

3、截断阈值处理

4、超阈值零处理

5、低阈值零处理

6、自适应阈值处理

7、Otsu处理

四、图像处理基础

1、感兴趣区域的提取

2、人脸部分进行脱敏处理


一、图像几何变化

我们以lena图片作为素材

1、对图片进行放大、缩小、水平放大和垂直放大

python 复制代码
import cv2
import numpy as np

'''1、将lena_color.jpg 放大到600*600
2、将lena_color.jgp 缩小到50*50
3、将lena_color.jgp 在水平方向放大到2位,垂直方向放大到1.5倍
4、将以上所有图像进行显示。'''

img = cv2.imread('project_demo/class_picture/lena_color.jpg')
img1 = cv2.resize(img, (600, 600))
img2 = cv2.resize(img, (50, 50))
img3 = cv2.resize(img, (0, 0), fx=2, fy=1.5)
cv2.imshow('img1', img1)
cv2.imshow('img2', img2)
cv2.imshow('img3', img3)
cv2.waitKey(0)
cv2.destroyAllWindows()

2、旋转、缩放、控制画布大小

python 复制代码
'''
将lena_color.jpg
     a、以图像中心为旋转中心,顺时针旋转60度,
     b、图像缩小为原来的0.4,
     c、画布大小为原始图像大小。
再将图像进行平移至原始图像的(0,0)->变换后图像的(50,25)
'''
from tkinter import W
import cv2
import numpy as np
# 读取图像
img = cv2.imread('project_demo/class_picture/lena_color.jpg')
# 图像旋转
h, w = img.shape[:2]    # 获取图像的宽高
M = cv2.getRotationMatrix2D((w / 2, h / 2), -60, scale=0.4) # 获取旋转矩阵
rotated1 = cv2.warpAffine(img, M, (w, h))   # 进行旋转
cv2.imshow('rotated1', rotated1)
# 图像平移
src = np.float32([[0, 0], [0, w-1], [h-1, 0]])  # 获取原始图像的三个点
dst = np.float32([[50, 25], [50, w + 25], [h + 50, 25]])    # 获取变换后的三个点
M2 = cv2.getAffineTransform(src, dst)   # 获取仿射变换矩阵
rotated2 = cv2.warpAffine(rotated1, M2, (w, h)) # 进行仿射变换
cv2.imshow('rotated2', rotated2)

cv2.waitKey(0)
cv2.destroyAllWindows()

效果图:

二、图像形态学处理

1、梯度运算

python 复制代码
import cv2
import numpy as np

# 形态学梯度运算
image = cv2.imread('project_demo/class_picture/gradient.bmp')
kernel = np.ones((3, 3), np.uint8)
gradient_image = cv2.morphologyEx(image, cv2.MORPH_GRADIENT, kernel)
cv2.imshow('Original Image', image)
cv2.imshow('Gradient Image', gradient_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

2、闭运算

python 复制代码
image = cv2.imread('project_demo/class_picture/gradient.bmp')
kernel = np.ones((3, 3), np.uint8)
closing_image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernel)
cv2.imshow('Original Image', image)
cv2.imshow('Closing Image', closing_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

3、礼帽运算

python 复制代码
image = cv2.imread('project_demo/class_picture/lena.bmp')
image2 = cv2.imread('project_demo/class_picture/gradient.bmp')
kernel = np.ones((3, 3), np.uint8)
tophat_image = cv2.morphologyEx(image, cv2.MORPH_TOPHAT, kernel)
tophat_image2 = cv2.morphologyEx(image2, cv2.MORPH_TOPHAT, kernel)
cv2.imshow('Original Image', image)
cv2.imshow('Top Hat Image', tophat_image)
cv2.imshow('Original Image2', image2)
cv2.imshow('Top Hat Image2', tophat_image2)
cv2.waitKey(0)
cv2.destroyAllWindows()

4、黑帽运算

python 复制代码
image = cv2.imread('project_demo/class_picture/lena.bmp')
image2 = cv2.imread('project_demo/class_picture/gradient.bmp')
kernel = np.ones((3, 3), np.uint8)
blackhat_image = cv2.morphologyEx(image, cv2.MORPH_BLACKHAT, kernel)
blackhat_image2 = cv2.morphologyEx(image2, cv2.MORPH_BLACKHAT, kernel)
cv2.imshow('Original Image', image)
cv2.imshow('Black Hat Image', blackhat_image)
cv2.imshow('Original Image2', image2)
cv2.imshow('Black Hat Image2', blackhat_image2)
cv2.waitKey(0)
cv2.destroyAllWindows()

三、图像阈值分割

1、二值化处理

python 复制代码
import numpy as np

img = cv2.imread('project_demo/class_picture/lena_gray.jpg')
# 二进制阈值化,设阈值127
retval, dst = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
cv2.imshow('img', img)
cv2.imshow('dst', dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

2、反二值化处理

python 复制代码
# 反二进制阈值化,设阈值127
retval, dst = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV)
cv2.imshow('img', img)
cv2.imshow('dst', dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

3、截断阈值处理

python 复制代码
retval, dst = cv2.threshold(img, 127, 255, cv2.THRESH_TRUNC)
cv2.imshow('img', img)
cv2.imshow('dst', dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

4、超阈值零处理

python 复制代码
# 超阈值化零处理,设阈值127
retval, dst = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO)
cv2.imshow('img', img)
cv2.imshow('dst', dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

5、低阈值零处理

python 复制代码
# 低阈值零处理,设阈值127
retval, dst = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO_INV)
cv2.imshow('img', img)
cv2.imshow('dst', dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

6、自适应阈值处理

python 复制代码
# 自适应阈值处理
dst = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)
cv2.imshow('img', img)
cv2.imshow('dst', dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

7、Otsu处理

python 复制代码
# Otsu处理
retval, dst = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
cv2.imshow('img', img)
cv2.imshow('dst', dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

四、图像处理基础

1、感兴趣区域的提取

步骤:

① 读取一张图像,如果成功读取,则显示该图像,如果读取失败,则显示"The file is not exist"

② 读取图像

③ 对兴趣区域提取

python 复制代码
'''
对兴趣区域提取
1.读取一张图像,如果成功读取,则显示该图像,如果读取失败,则显示"The file is not exist"
2.读取图像
3.对兴趣区域提取
'''
import cv2
import matplotlib.pyplot as plt
def show_plt():
    iamge_path = 'project_demo/class_picture/kongfu_panda.jpg'
    image = plt.imread(iamge_path)
    plt.imshow(image)
    plt.axis('off')
    plt.show()
def main():
    img = cv2.imread('project_demo/class_picture/kongfu_panda.jpg')
    if img is None:
        print('The file is not exist')
    else:
        # 提取兴趣区域
        img1 = img[70:325, 48:221]
        img2 = img[83:471, 377:592]
        img3 = img[259:481, 621:737]
        cv2.imshow('img1', img1)
        cv2.imshow('img2', img2)
        cv2.imshow('img3', img3)
        cv2.waitKey(0)
        cv2.destroyAllWindows()
if __name__ == '__main__':
    show_plt()
    main()

2、人脸部分进行脱敏处理

python 复制代码
'''
对海报的人脸部分进行脱敏处理

'''
import cv2
import matplotlib.pyplot as plt
import numpy as np

def show_plt():
    iamge_path = 'project_demo/class_picture/kongfu_panda.jpg'
    image = plt.imread(iamge_path)
    plt.imshow(image)
    plt.axis('off')
    plt.show()
def main():
    img = cv2.imread('project_demo/class_picture/police_story.png')
    cv2.namedWindow('image', cv2.WINDOW_NORMAL)
    cv2.resizeWindow('image', 500, 500)
    if img is None:
        print('The file is not exist')
    else:
        face = np.random.randint(0, 255, (600, 445, 3))
        img[50:650, 364:809, :] = face
        cv2.imshow('image', img)
        cv2.waitKey(0)
        cv2.destroyAllWindows()
if __name__ == '__main__':
    #show_plt
    main()
相关推荐
aneasystone本尊2 小时前
学习 Chat2Graph 的知识库服务
人工智能
IT_陈寒2 小时前
Redis 性能翻倍的 7 个冷门技巧,第 5 个大多数人都不知道!
前端·人工智能·后端
飞哥数智坊12 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三13 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯13 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet15 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算16 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心16 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar17 小时前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai17 小时前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc