import numpy as np
from tensorflow import keras
from tensorflow.keras import layers
# 加载和预处理数据
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = x_train.reshape(-1, 28, 28, 1).astype("float32") / 255.0
x_test = x_test.reshape(-1, 28, 28, 1).astype("float32") / 255.0
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
# 定义简单的 CNN 模型
def simple_cnn():
model = keras.Sequential([
layers.Conv2D(16, (3, 3), activation='relu', input_shape=(28, 28, 1)),
layers.MaxPooling2D((2, 2)),
layers.Flatten(),
layers.Dense(128, activation='relu'),
layers.Dense(10, activation='softmax')
])
return model
# 定义复杂的 CNN 模型
def complex_cnn():
model = keras.Sequential([
layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, (3, 3), activation='relu'),
layers.MaxPooling2D((2, 2)),
layers.Flatten(),
layers.Dense(256, activation='relu'),
layers.Dense(128, activation='relu'),
layers.Dense(10, activation='softmax')
])
return model
# 定义不同的优化器
optimizers = {
'SGD': keras.optimizers.SGD(learning_rate=0.01),
'Adam': keras.optimizers.Adam(learning_rate=0.001)
}
# 训练不同的模型和优化器组合
epochs = 5
batch_size = 64
for model_name, model_fn in [('Simple CNN', simple_cnn), ('Complex CNN', complex_cnn)]:
for optimizer_name, optimizer in optimizers.items():
model = model_fn()
model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
print(f"Training {model_name} with {optimizer_name} optimizer:")
history = model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(x_test, y_test))
train_loss = history.history['loss']
train_acc = history.history['accuracy']
val_loss = history.history['val_loss']
val_acc = history.history['val_accuracy']
print(f"Training Loss: {train_loss}")
print(f"Training Accuracy: {train_acc}")
print(f"Validation Loss: {val_loss}")
print(f"Validation Accuracy: {val_acc}")
python打卡训练营Day41
珂宝_2025-06-02 9:02
相关推荐
Tansmjs16 分钟前
使用Python自动收发邮件m0_5613596718 分钟前
用Python监控系统日志并发送警报idwangzhen32 分钟前
GEO优化系统哪个功能强大许泽宇的技术分享1 小时前
第 1 章:认识 Claude CodeAIFQuant1 小时前
如何利用免费股票 API 构建量化交易策略:实战分享布局呆星1 小时前
SQLite数据库的介绍与使用2401_838472511 小时前
用Python和Twilio构建短信通知系统weixin_452159551 小时前
如何从Python初学者进阶为专家?Hello.Reader1 小时前
面向 403 与域名频繁变更的合规爬虫工程实践以 Libvio 系站点为例深蓝海拓2 小时前
PySide6从0开始学习的笔记(二十五) Qt窗口对象的生命周期和及时销毁