import numpy as np
from tensorflow import keras
from tensorflow.keras import layers
# 加载和预处理数据
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = x_train.reshape(-1, 28, 28, 1).astype("float32") / 255.0
x_test = x_test.reshape(-1, 28, 28, 1).astype("float32") / 255.0
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
# 定义简单的 CNN 模型
def simple_cnn():
model = keras.Sequential([
layers.Conv2D(16, (3, 3), activation='relu', input_shape=(28, 28, 1)),
layers.MaxPooling2D((2, 2)),
layers.Flatten(),
layers.Dense(128, activation='relu'),
layers.Dense(10, activation='softmax')
])
return model
# 定义复杂的 CNN 模型
def complex_cnn():
model = keras.Sequential([
layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, (3, 3), activation='relu'),
layers.MaxPooling2D((2, 2)),
layers.Flatten(),
layers.Dense(256, activation='relu'),
layers.Dense(128, activation='relu'),
layers.Dense(10, activation='softmax')
])
return model
# 定义不同的优化器
optimizers = {
'SGD': keras.optimizers.SGD(learning_rate=0.01),
'Adam': keras.optimizers.Adam(learning_rate=0.001)
}
# 训练不同的模型和优化器组合
epochs = 5
batch_size = 64
for model_name, model_fn in [('Simple CNN', simple_cnn), ('Complex CNN', complex_cnn)]:
for optimizer_name, optimizer in optimizers.items():
model = model_fn()
model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
print(f"Training {model_name} with {optimizer_name} optimizer:")
history = model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(x_test, y_test))
train_loss = history.history['loss']
train_acc = history.history['accuracy']
val_loss = history.history['val_loss']
val_acc = history.history['val_accuracy']
print(f"Training Loss: {train_loss}")
print(f"Training Accuracy: {train_acc}")
print(f"Validation Loss: {val_loss}")
print(f"Validation Accuracy: {val_acc}")
python打卡训练营Day41
珂宝_2025-06-02 9:02
相关推荐
敢敢变成了憨憨1 小时前
java操作服务器文件(把解析过的文件迁移到历史文件夹地下)敲键盘的小夜猫2 小时前
Milvus向量Search查询综合案例实战(下)简简单单做算法2 小时前
基于mediapipe深度学习的虚拟画板系统python源码愿望会实现吧4 小时前
|从零开始的Pyside2界面编程|绘图、布局及页面切换zstar-_4 小时前
【Ragflow】24.Ragflow-plus开发日志:增加分词逻辑,修复关键词检索失效问题love530love4 小时前
【笔记】2025 年 Windows 系统下 abu 量化交易库部署与适配指南love530love4 小时前
【笔记】为 Python 项目安装图像处理与科学计算依赖(MINGW64 环境)奉系坤阀4 小时前
Ubuntu终端性能监视工具YYXZZ。。4 小时前
PyTorch-Transforms的使用(二)lczdyx5 小时前
一键净化Excel数据:高性能Python脚本实现多核并行清理