python打卡训练营Day41

复制代码
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers
 
# 加载和预处理数据
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = x_train.reshape(-1, 28, 28, 1).astype("float32") / 255.0
x_test = x_test.reshape(-1, 28, 28, 1).astype("float32") / 255.0
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
 
# 定义简单的 CNN 模型
def simple_cnn():
    model = keras.Sequential([
        layers.Conv2D(16, (3, 3), activation='relu', input_shape=(28, 28, 1)),
        layers.MaxPooling2D((2, 2)),
        layers.Flatten(),
        layers.Dense(128, activation='relu'),
        layers.Dense(10, activation='softmax')
    ])
    return model
 
# 定义复杂的 CNN 模型
def complex_cnn():
    model = keras.Sequential([
        layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
        layers.MaxPooling2D((2, 2)),
        layers.Conv2D(64, (3, 3), activation='relu'),
        layers.MaxPooling2D((2, 2)),
        layers.Flatten(),
        layers.Dense(256, activation='relu'),
        layers.Dense(128, activation='relu'),
        layers.Dense(10, activation='softmax')
    ])
    return model
 
# 定义不同的优化器
optimizers = {
    'SGD': keras.optimizers.SGD(learning_rate=0.01),
    'Adam': keras.optimizers.Adam(learning_rate=0.001)
}
 
# 训练不同的模型和优化器组合
epochs = 5
batch_size = 64
 
for model_name, model_fn in [('Simple CNN', simple_cnn), ('Complex CNN', complex_cnn)]:
    for optimizer_name, optimizer in optimizers.items():
        model = model_fn()
        model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
        print(f"Training {model_name} with {optimizer_name} optimizer:")
        history = model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(x_test, y_test))
 
        train_loss = history.history['loss']
        train_acc = history.history['accuracy']
        val_loss = history.history['val_loss']
        val_acc = history.history['val_accuracy']
 
        print(f"Training Loss: {train_loss}")
        print(f"Training Accuracy: {train_acc}")
        print(f"Validation Loss: {val_loss}")
        print(f"Validation Accuracy: {val_acc}")

@浙大疏锦行

相关推荐
Learn Beyond Limits7 分钟前
Data Preprocessing|数据预处理
大数据·人工智能·python·ai·数据挖掘·数据处理
lucky_dog11 分钟前
python——课堂笔记😻
python
西部秋虫2 小时前
YOLO 训练车牌定位模型 + OpenCV C++ 部署完整步骤
c++·python·yolo·车牌识别
18你磊哥3 小时前
chromedriver.exe的使用和python基本处理
开发语言·python
闲人编程3 小时前
Python的抽象基类(ABC):定义接口契约的艺术
开发语言·python·接口·抽象类·基类·abc·codecapsule
vx_dmxq2113 小时前
【微信小程序学习交流平台】(免费领源码+演示录像)|可做计算机毕设Java、Python、PHP、小程序APP、C#、爬虫大数据、单片机、文案
java·spring boot·python·mysql·微信小程序·小程序·idea
无垠的广袤3 小时前
【工业树莓派 CM0 NANO 单板计算机】本地部署 EMQX
linux·python·嵌入式硬件·物联网·树莓派·emqx·工业物联网
艾莉丝努力练剑4 小时前
【Python基础:语法第一课】Python 基础语法详解:变量、类型、动态特性与运算符实战,构建完整的编程基础认知体系
大数据·人工智能·爬虫·python·pycharm·编辑器
gCode Teacher 格码致知4 小时前
Python基础教学:如何拼接字符串?-由Deepseek产生
python
还债大湿兄4 小时前
阿里通义千问调用图像大模型生成轮动漫风格 python调用
开发语言·前端·python