python打卡训练营Day41

复制代码
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers
 
# 加载和预处理数据
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = x_train.reshape(-1, 28, 28, 1).astype("float32") / 255.0
x_test = x_test.reshape(-1, 28, 28, 1).astype("float32") / 255.0
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
 
# 定义简单的 CNN 模型
def simple_cnn():
    model = keras.Sequential([
        layers.Conv2D(16, (3, 3), activation='relu', input_shape=(28, 28, 1)),
        layers.MaxPooling2D((2, 2)),
        layers.Flatten(),
        layers.Dense(128, activation='relu'),
        layers.Dense(10, activation='softmax')
    ])
    return model
 
# 定义复杂的 CNN 模型
def complex_cnn():
    model = keras.Sequential([
        layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
        layers.MaxPooling2D((2, 2)),
        layers.Conv2D(64, (3, 3), activation='relu'),
        layers.MaxPooling2D((2, 2)),
        layers.Flatten(),
        layers.Dense(256, activation='relu'),
        layers.Dense(128, activation='relu'),
        layers.Dense(10, activation='softmax')
    ])
    return model
 
# 定义不同的优化器
optimizers = {
    'SGD': keras.optimizers.SGD(learning_rate=0.01),
    'Adam': keras.optimizers.Adam(learning_rate=0.001)
}
 
# 训练不同的模型和优化器组合
epochs = 5
batch_size = 64
 
for model_name, model_fn in [('Simple CNN', simple_cnn), ('Complex CNN', complex_cnn)]:
    for optimizer_name, optimizer in optimizers.items():
        model = model_fn()
        model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
        print(f"Training {model_name} with {optimizer_name} optimizer:")
        history = model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(x_test, y_test))
 
        train_loss = history.history['loss']
        train_acc = history.history['accuracy']
        val_loss = history.history['val_loss']
        val_acc = history.history['val_accuracy']
 
        print(f"Training Loss: {train_loss}")
        print(f"Training Accuracy: {train_acc}")
        print(f"Validation Loss: {val_loss}")
        print(f"Validation Accuracy: {val_acc}")

@浙大疏锦行

相关推荐
烛阴6 小时前
简单入门Python装饰器
前端·python
好开心啊没烦恼7 小时前
Python 数据分析:numpy,说人话,说说数组维度。听故事学知识点怎么这么容易?
开发语言·人工智能·python·数据挖掘·数据分析·numpy
面朝大海,春不暖,花不开7 小时前
使用 Python 实现 ETL 流程:从文本文件提取到数据处理的全面指南
python·etl·原型模式
2301_805054568 小时前
Python训练营打卡Day59(2025.7.3)
开发语言·python
万千思绪9 小时前
【PyCharm 2025.1.2配置debug】
ide·python·pycharm
微风粼粼10 小时前
程序员在线接单
java·jvm·后端·python·eclipse·tomcat·dubbo
云天徽上10 小时前
【PaddleOCR】OCR表格识别数据集介绍,包含PubTabNet、好未来表格识别、WTW中文场景表格等数据,持续更新中......
python·ocr·文字识别·表格识别·paddleocr·pp-ocrv5
你怎么知道我是队长11 小时前
python-input内置函数
开发语言·python
叹一曲当时只道是寻常11 小时前
Python实现优雅的目录结构打印工具
python
hbwhmama12 小时前
python高级变量XIII
python