python打卡训练营Day41

复制代码
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers
 
# 加载和预处理数据
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = x_train.reshape(-1, 28, 28, 1).astype("float32") / 255.0
x_test = x_test.reshape(-1, 28, 28, 1).astype("float32") / 255.0
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
 
# 定义简单的 CNN 模型
def simple_cnn():
    model = keras.Sequential([
        layers.Conv2D(16, (3, 3), activation='relu', input_shape=(28, 28, 1)),
        layers.MaxPooling2D((2, 2)),
        layers.Flatten(),
        layers.Dense(128, activation='relu'),
        layers.Dense(10, activation='softmax')
    ])
    return model
 
# 定义复杂的 CNN 模型
def complex_cnn():
    model = keras.Sequential([
        layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
        layers.MaxPooling2D((2, 2)),
        layers.Conv2D(64, (3, 3), activation='relu'),
        layers.MaxPooling2D((2, 2)),
        layers.Flatten(),
        layers.Dense(256, activation='relu'),
        layers.Dense(128, activation='relu'),
        layers.Dense(10, activation='softmax')
    ])
    return model
 
# 定义不同的优化器
optimizers = {
    'SGD': keras.optimizers.SGD(learning_rate=0.01),
    'Adam': keras.optimizers.Adam(learning_rate=0.001)
}
 
# 训练不同的模型和优化器组合
epochs = 5
batch_size = 64
 
for model_name, model_fn in [('Simple CNN', simple_cnn), ('Complex CNN', complex_cnn)]:
    for optimizer_name, optimizer in optimizers.items():
        model = model_fn()
        model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
        print(f"Training {model_name} with {optimizer_name} optimizer:")
        history = model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(x_test, y_test))
 
        train_loss = history.history['loss']
        train_acc = history.history['accuracy']
        val_loss = history.history['val_loss']
        val_acc = history.history['val_accuracy']
 
        print(f"Training Loss: {train_loss}")
        print(f"Training Accuracy: {train_acc}")
        print(f"Validation Loss: {val_loss}")
        print(f"Validation Accuracy: {val_acc}")

@浙大疏锦行

相关推荐
Robot侠4 小时前
极简LLM入门指南4
大数据·python·llm·prompt·提示工程
等....5 小时前
Miniconda使用
开发语言·python
Java&Develop5 小时前
Aes加密 GCM java
java·开发语言·python
爱笑的眼睛116 小时前
超越MSE与交叉熵:深度解析损失函数的动态本质与高阶设计
java·人工智能·python·ai
Rose sait7 小时前
【环境配置】Linux配置虚拟环境pytorch
linux·人工智能·python
过期动态8 小时前
JDBC高级篇:优化、封装与事务全流程指南
android·java·开发语言·数据库·python·mysql
一世琉璃白_Y8 小时前
pg配置国内数据源安装
linux·python·postgresql·centos
liwulin05068 小时前
【PYTHON】COCO数据集中的物品ID
开发语言·python
小鸡吃米…8 小时前
Python - XML 处理
xml·开发语言·python·开源
我赵帅的飞起8 小时前
python国密SM4加解密
python·sm4加解密·国密sm4加解密