import numpy as np
from tensorflow import keras
from tensorflow.keras import layers
# 加载和预处理数据
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = x_train.reshape(-1, 28, 28, 1).astype("float32") / 255.0
x_test = x_test.reshape(-1, 28, 28, 1).astype("float32") / 255.0
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
# 定义简单的 CNN 模型
def simple_cnn():
model = keras.Sequential([
layers.Conv2D(16, (3, 3), activation='relu', input_shape=(28, 28, 1)),
layers.MaxPooling2D((2, 2)),
layers.Flatten(),
layers.Dense(128, activation='relu'),
layers.Dense(10, activation='softmax')
])
return model
# 定义复杂的 CNN 模型
def complex_cnn():
model = keras.Sequential([
layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, (3, 3), activation='relu'),
layers.MaxPooling2D((2, 2)),
layers.Flatten(),
layers.Dense(256, activation='relu'),
layers.Dense(128, activation='relu'),
layers.Dense(10, activation='softmax')
])
return model
# 定义不同的优化器
optimizers = {
'SGD': keras.optimizers.SGD(learning_rate=0.01),
'Adam': keras.optimizers.Adam(learning_rate=0.001)
}
# 训练不同的模型和优化器组合
epochs = 5
batch_size = 64
for model_name, model_fn in [('Simple CNN', simple_cnn), ('Complex CNN', complex_cnn)]:
for optimizer_name, optimizer in optimizers.items():
model = model_fn()
model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
print(f"Training {model_name} with {optimizer_name} optimizer:")
history = model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(x_test, y_test))
train_loss = history.history['loss']
train_acc = history.history['accuracy']
val_loss = history.history['val_loss']
val_acc = history.history['val_accuracy']
print(f"Training Loss: {train_loss}")
print(f"Training Accuracy: {train_acc}")
print(f"Validation Loss: {val_loss}")
print(f"Validation Accuracy: {val_acc}")
python打卡训练营Day41
珂宝_2025-06-02 9:02
相关推荐
田里的水稻3 分钟前
C++_python_相互之间的包含调用方法2501_941870568 分钟前
面向微服务熔断与流量削峰策略的互联网系统稳定性设计与多语言工程实践分享GIS之路1 小时前
GDAL 实现矢量裁剪IT=>小脑虎1 小时前
Python零基础衔接进阶知识点【详解版】智航GIS1 小时前
10.6 Scrapy:Python 网页爬取框架清水白石0081 小时前
解构异步编程的两种哲学:从 asyncio 到 Trio,理解 Nursery 的魔力山海青风2 小时前
图像识别零基础实战入门 1 计算机如何“看”一张图片彼岸花开了吗2 小时前
构建AI智能体:八十、SVD知识整理与降维:从数据混沌到语义秩序的智能转换山土成旧客2 小时前
【Python学习打卡-Day40】从“能跑就行”到“工程标准”:PyTorch训练与测试的规范化写法闲人编程2 小时前
消息通知系统实现:构建高可用、可扩展的企业级通知服务