python打卡训练营Day41

复制代码
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers
 
# 加载和预处理数据
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = x_train.reshape(-1, 28, 28, 1).astype("float32") / 255.0
x_test = x_test.reshape(-1, 28, 28, 1).astype("float32") / 255.0
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
 
# 定义简单的 CNN 模型
def simple_cnn():
    model = keras.Sequential([
        layers.Conv2D(16, (3, 3), activation='relu', input_shape=(28, 28, 1)),
        layers.MaxPooling2D((2, 2)),
        layers.Flatten(),
        layers.Dense(128, activation='relu'),
        layers.Dense(10, activation='softmax')
    ])
    return model
 
# 定义复杂的 CNN 模型
def complex_cnn():
    model = keras.Sequential([
        layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
        layers.MaxPooling2D((2, 2)),
        layers.Conv2D(64, (3, 3), activation='relu'),
        layers.MaxPooling2D((2, 2)),
        layers.Flatten(),
        layers.Dense(256, activation='relu'),
        layers.Dense(128, activation='relu'),
        layers.Dense(10, activation='softmax')
    ])
    return model
 
# 定义不同的优化器
optimizers = {
    'SGD': keras.optimizers.SGD(learning_rate=0.01),
    'Adam': keras.optimizers.Adam(learning_rate=0.001)
}
 
# 训练不同的模型和优化器组合
epochs = 5
batch_size = 64
 
for model_name, model_fn in [('Simple CNN', simple_cnn), ('Complex CNN', complex_cnn)]:
    for optimizer_name, optimizer in optimizers.items():
        model = model_fn()
        model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
        print(f"Training {model_name} with {optimizer_name} optimizer:")
        history = model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(x_test, y_test))
 
        train_loss = history.history['loss']
        train_acc = history.history['accuracy']
        val_loss = history.history['val_loss']
        val_acc = history.history['val_accuracy']
 
        print(f"Training Loss: {train_loss}")
        print(f"Training Accuracy: {train_acc}")
        print(f"Validation Loss: {val_loss}")
        print(f"Validation Accuracy: {val_acc}")

@浙大疏锦行

相关推荐
fantasy_arch3 小时前
pytorch例子计算两张图相似度
人工智能·pytorch·python
WBluuue4 小时前
数学建模:智能优化算法
python·机器学习·数学建模·爬山算法·启发式算法·聚类·模拟退火算法
赴3355 小时前
矿物分类案列 (一)六种方法对数据的填充
人工智能·python·机器学习·分类·数据挖掘·sklearn·矿物分类
大模型真好玩5 小时前
一文深度解析OpenAI近期发布系列大模型:意欲一统大模型江湖?
人工智能·python·mcp
RPA+AI十二工作室5 小时前
亚马逊店铺绩效巡检_影刀RPA源码解读
chrome·python·rpa·影刀
小艳加油6 小时前
Python机器学习与深度学习;Transformer模型/注意力机制/目标检测/语义分割/图神经网络/强化学习/生成式模型/自监督学习/物理信息神经网络等
python·深度学习·机器学习·transformer
学行库小秘7 小时前
ANN神经网络回归预测模型
人工智能·python·深度学习·神经网络·算法·机器学习·回归
Yn3128 小时前
在 Python 中使用 json 模块的完整指南
开发语言·python·json
秋难降8 小时前
线段树的深度解析(最长递增子序列类解题步骤)
数据结构·python·算法
猿榜8 小时前
Python基础-控制结构
python