python打卡训练营Day41

复制代码
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers
 
# 加载和预处理数据
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = x_train.reshape(-1, 28, 28, 1).astype("float32") / 255.0
x_test = x_test.reshape(-1, 28, 28, 1).astype("float32") / 255.0
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
 
# 定义简单的 CNN 模型
def simple_cnn():
    model = keras.Sequential([
        layers.Conv2D(16, (3, 3), activation='relu', input_shape=(28, 28, 1)),
        layers.MaxPooling2D((2, 2)),
        layers.Flatten(),
        layers.Dense(128, activation='relu'),
        layers.Dense(10, activation='softmax')
    ])
    return model
 
# 定义复杂的 CNN 模型
def complex_cnn():
    model = keras.Sequential([
        layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
        layers.MaxPooling2D((2, 2)),
        layers.Conv2D(64, (3, 3), activation='relu'),
        layers.MaxPooling2D((2, 2)),
        layers.Flatten(),
        layers.Dense(256, activation='relu'),
        layers.Dense(128, activation='relu'),
        layers.Dense(10, activation='softmax')
    ])
    return model
 
# 定义不同的优化器
optimizers = {
    'SGD': keras.optimizers.SGD(learning_rate=0.01),
    'Adam': keras.optimizers.Adam(learning_rate=0.001)
}
 
# 训练不同的模型和优化器组合
epochs = 5
batch_size = 64
 
for model_name, model_fn in [('Simple CNN', simple_cnn), ('Complex CNN', complex_cnn)]:
    for optimizer_name, optimizer in optimizers.items():
        model = model_fn()
        model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
        print(f"Training {model_name} with {optimizer_name} optimizer:")
        history = model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(x_test, y_test))
 
        train_loss = history.history['loss']
        train_acc = history.history['accuracy']
        val_loss = history.history['val_loss']
        val_acc = history.history['val_accuracy']
 
        print(f"Training Loss: {train_loss}")
        print(f"Training Accuracy: {train_acc}")
        print(f"Validation Loss: {val_loss}")
        print(f"Validation Accuracy: {val_acc}")

@浙大疏锦行

相关推荐
企业软文推广12 小时前
奥迪A5L×华为:品牌营销视角下的燃油车智能突围战!
python·华为
Pocker_Spades_A12 小时前
Python快速入门专业版(十五):数据类型实战:用户信息录入程序(整合变量、输入与类型转换)
数据库·python
IMER SIMPLE12 小时前
人工智能-python-深度学习-神经网络-GoogLeNet
人工智能·python·深度学习
小宁爱Python12 小时前
Django 从环境搭建到第一个项目
后端·python·django
带娃的IT创业者13 小时前
如何开发一个教育性质的多线程密码猜测演示器
网络·python·算法
luckys.one19 小时前
第9篇:Freqtrade量化交易之config.json 基础入门与初始化
javascript·数据库·python·mysql·算法·json·区块链
大翻哥哥20 小时前
Python 2025:量化金融与智能交易的新纪元
开发语言·python·金融
zhousenshan21 小时前
Python爬虫常用框架
开发语言·爬虫·python
IMER SIMPLE1 天前
人工智能-python-深度学习-经典神经网络AlexNet
人工智能·python·深度学习
CodeCraft Studio1 天前
国产化Word处理组件Spire.DOC教程:使用 Python 将 Markdown 转换为 HTML 的详细教程
python·html·word·markdown·国产化·spire.doc·文档格式转换