AI Agent 框架大盘点:Coze、Dify 到 LangChain,哪款是你的菜?

目录

  • 开篇:Agent 炙手可热的背景与挑战
  • Part1:Agent 框架入门区(面向产品/前端/运营)
    • 🧱 Coze:零代码 AI 智能体平台
    • 🔧 Dify:低代码 LLM 应用开发平台
    • 🎨 LangFlow:可视化 LangChain 工作流编辑器
  • Part2:进阶/研究区(面向后端/AI 工程师/科研)
    • 🌐 LangChain:通用级 AI 编排框架
    • 🤖 AutoGen:微软多智能体对话编排
    • 👥 CrewAI:多智能体团队+Flow 模型
    • 💼 Semantic Kernel:微软企业级 Agent SDK
    • 🧠 Letta (MemGPT):持久记忆、多用户 Agent 环境
    • 📚 LlamaIndex:RAG 与企业私有知识 Agent 框架
    • 🚀 OpenAI Agents SDK:升级版 Swarm,简约高效
  • 对比小结:框架功能矩阵、GitHub 热度与适用场景

开篇:Agent 炙手可热的背景与挑战

最近,AI 智能体 (AI Agent) 是热门话题------很多大厂和创业公司都在开发实现各种 AI Agent。

OpenAI、微软、深度学习团队都纷纷推出自己的 Agent 技术,2025 年被预测为 Agent 爆发年。AI Agent 智能体被定义为"具有自主决策能力、能在特定环境中感知并通过执行动作实现目标的智能实体"。

简而言之,就是让大模型不再是孤军奋战的全能战士 ,而是能够调用工具、相互协作、具有专业分工的智能超级个体。

回顾历史:

  • 2023 年初,OpenAI 在 ChatGPT-4 中率先加入了插件功能,让 ChatGPT 能自主"打电话"给计算器、浏览器等外部功能,堪称早期的 AI Agent 实现;

  • 随后,谷歌 DeepMind 的 AlphaEvolve 走得更远一点,它能"自我进化"地设计算法和写代码;

  • 国内也有蝴蝶效应公司的 Manus(Agent 平台)等亮相;

这些都预示着智能体时代真的来了。

  • 然而现实中,将 Agent 用到实战却有不少挑战

  • 如何高效串联模型、内存、检索、插件?

  • 如何在复杂业务场景下做流程编排?

  • 如何协同多个 Agent 协作?

  • 于是市面上涌现出各种 Agent 框架,帮助开发者「少造轮子」。

选择多了反而是一个幸福的烦恼。就像是选武器,不同场景不同打法:

  • 产品同事或前端同学可能只想用低代码/可视化快搭原型;

  • 而后端和 AI 工程师则想深度掌控、多 Agent 协同。

下面就带大家从入门到进阶,拆解主流框架的功能和适用场景,一起找出适合你的 "菜园地" !🎯🚀

Part1:Agent 框架入门区(适合产品/前端/运营)

🧱 Coze:零代码 AI 智能体平台

Coze(国内称"扣子",ByteDance 出品)主打零代码构建

它的理念是"让 AI 应用开发像搭积木一样简单":完全可视化界面 ,用户通过拖拽组合功能模块,无需写一行代码就能快速创建 AI 智能助手。Coze 内置了多种大模型接入 (如 GPT-4、Claude 等),还有搜索、计算、网页浏览等丰富插件 ,让智能体能做问答、计算、外部检索等任务。同时,Coze 支持多渠道发布:一次配置,可在企业微信、钉钉、飞书、微信、网页等多平台运行。简单来说,Coze 就像"微信公众平台+AI 模型+插件",让产品/运营同学也能轻松上手AI项目,迅速落地原型

特点:

diff 复制代码
-   完全可视化、拖拽式配置;
-   支持多模型、多语种;
-   插件生态丰富(搜索、表格、第三方 API 等);
-   免费开放可用(个人限额)。

适用场景: 产品经理、小白快速构建聊天机器人、知识问答助手等,追求「零代码快速验证想法」。无需后端开发经验即可启动项目。

🔧 Dify:低代码 LLM 应用开发平台

Dify 是一款开源 的 LLM 应用开发平台,介于零代码和全代码之间。它融合了后端即服务(BaaS)+ LLMOps 思想,内置了从 Agent 构建到流程编排、RAG 引擎、模型管理 等全套功能。对于开发者来说,Dify 提供了低代码 界面来设计 AI 工作流(可视化编辑器)、也可通过 API 进行深度定制。你可以用 Dify 快速搭建垂类问答系统、RAG 检索机器人、工具型 AI 助手等。它还支持自部署:企业可以独立部署服务,连接自己的私有模型和数据,保证数据安全和可控。

特点:

  • 开源平台;

  • 提供低代码工作流编辑器;

  • 支持插入 Agent、RAG 管道、工具调用等;

  • 内置向量检索引擎和多模型管理;

适用场景:

  • 个人开发者或者 AI 项目团队
  • 想快速构建垂直领域问答、客服助手、支持知识库检索的应用,且希望自部署、对接私有数据

🎨 LangFlow:可视化 LangChain 工作流编辑器

LangFlow 是针对 LangChain 的开源 可视化前端 工具。它提供拖拽式界面,让你像搭积木一样把各种组件(LLM、Prompt、工具、Chains、Agents 等)连成图,实时测试和迭代 AI 流程。通过 LangFlow,用户可以直观地调整模型参数、切换不同的大模型、监控代理(Agent),并能将流程导出成代码部署。

简单来说,LangFlow 是 前后端联调神器 :产品/前端同学可以用它快速搭建原型,后端工程师可以直接复用它导出的 JSON 并用在 LangChain 项目里。它也非常适合可视化演示和教学,让复杂的链式调用一目了然。

特点:

  • 可视化工作流编辑器,拖拽生成复杂链路;

  • 集成丰富节点(LLM、Memory、Toolkits、VectorDB 等);

  • 支持导出和即时运行;

  • 可帮助团队更直观地设计和调试 智能体流程。


适用场景: 产品/前端和后端联动开发 AI 应用时,快速原型迭代;想可视化展示 LangChain 架构原理的场景。喜欢"画流程图编写机器人"风格的同学。

Part2:进阶/研究区(适合后端/AI 工程师/科研)

🌐 LangChain:通用级 AI 编排框架

LangChain 是当前最火的 AI 交互框架之一,由哈佛大四学霸 Harrison Chase 在 2022 年底创建。它为开发者提供了一整套模块化组件(LLM、Prompt、Memory、Chains、Agents 等)来组合大型语言模型的能力。

LangChain 可以将 LLM 嵌入到任意应用中,让模型不仅能聊天,还能调用外部工具 和执行逻辑。比如,你可以在 LangChain 中定义一个代理(Agent),让 LLM 根据用户目标自主选择行动序列(比如先查询数据库、再调用API)。相对于传统硬编码流程的 Chain,Agent 最大的特点是自治性:它能通过内置推理能力自主决定做什么、用哪个工具,直到完成最终任务。

LangChain 开源社区活跃、生态完善,目前已经拥有 10 万+ GitHub Stars,支持 Python/TypeScript 等多语言,几乎可以对接任何现有大模型和工具。它也是很多其它框架(如 LangGraph)和平台(如 LangSmith、LangFlow)的基础。对于后端和 AI 工程师而言,LangChain 是"全能型 AI 编排框架"的代表------从简单的对话机器人到复杂的多 Agent 系统,都能用 LangChain 来搭建和扩展。

特点:

  • 开源,语言无关;
  • 提供丰富接口将 LLM 与数据库、搜索引擎、API、其他 AI 模块连接;
  • 原生支持记忆(Memory)、检索(VectorDB)、多轮会话;
  • Agent 架构成熟。

适用场景:

  • 后端开发者、AI 工程师构建复杂场景下的智能体系统;
  • 如自动化客服、数据分析助手、流程自动化等。想要最大自由度地定制 Agent 流程的场景。

🤖 AutoGen:微软多智能体对话编排

AutoGen 是微软研究院推出的多智能体对话框架 ,被誉为"聊天指挥官"。它允许开发者创建多个智能体 同时对话、分工,以完成复杂任务。这些智能体可以有不同角色、使用不同的大模型(LLM)、甚至同时整合人类输入和工具 API。

AutoGen 提供高层抽象,帮助开发者编排 Agent 之间的对话模式和行为:比如可以预定义协作流程,让某个 Agent 先进行分析,另一个 Agent 接管工具调用,再由第三方 Agent 总结报告。目前,AutoGen 在数学、编码、QA、供应链优化等领域都有成功应用。

简而言之,AutoGen 就像微软版的"多 Agent 总指挥平台"。你只需要用几行配置就能开启多 Agent 协作实验,不用关心底层细节。它是研究人员和工程师进行多智能体实验的利器,让不同智能体像开团队会议一样协同工作。

特点:

  • 开源框架,支持多 agent 会话协作;
  • Agent 可定制(可指定行为提示模板、工具接口);
  • 可处理人机混合流程;支持灵活的对话模式与行为(natural language + code)。

**

**适用场景: AI 研究人员或工程师尝试构建多 Agent 系统(如专家团队对答、复杂决策支持);需要智能体之间对话、工作分配的高级应用。

👥 CrewAI:多智能体团队 + Flow 模型

CrewAI 是一个面向"团队协作"的多 Agent 平台,主打角色扮演式智能体团队

每个 Agent 扮演不同角色(如经理、设计师、工程师等),它们自主分配任务、互相提问,共同完成目标。用公司组织来比喻,CrewAI 就像给每个 AI 智能体一个职位,它们协同工作。

CrewAI 框架基于 Python,Agent 可以连接任何开源模型或 API。而它的Flow 工作流功能,可以让开发者定义"事件驱动流程",将多个任务和 Crew 串联起来。Flow 简化了状态管理、任务间联动、条件分支和迭代循环等,让你能轻松设计多步骤自动化流程。

特点:

  • 开源多 Agent 协作框架,强调"团队"理念;
  • Agent 团队采用角色分工,自主调度;
  • 提供 Flow 特性,用于构建结构化、事件驱动的 AI 工作流;
  • 支持与现有工具(如 LangChain 工具包)集成。

**适用场景: 希望模拟**多角色智能体合作**的场景,如智能客服团队、项目管理助理等;需要高级流程控制(分支、循环、异步任务)的复杂应用。

💼 Semantic Kernel:微软企业级 Agent SDK

Semantic Kernel 是微软推出的轻量级多语言 SDK ,用于快速构建企业级 AI 应用。它的定位是"让开发者像写传统程序一样,用熟悉的语言(C#、Python、Java)插入智能"。

Semantic Kernel 通过**模板化提示(Semantic Functions)**和插件机制,使 LLM 能无缝调用现有 API 和代码。

微软自己的 Copilot 和 Bing 就使用了这个库,可见其企业级稳定性。近期 Semantic Kernel 也专门增强了对 Agent 的支持,提供了一套 Agent 抽象和记忆管理机制。

简单说,Semantic Kernel 就是微软出品的企业级 Agent 框架 。它支持把现有业务逻辑和后端服务作为"技能"封装给智能体调用。它还提供内置安全、可观测性等特性,适合大公司在生产环境使用。

特点:

  • 轻量级开源 SDK,模型无关;
  • 提供插件式开发模式,将函数/服务注册给智能体;
  • 跨语言支持(C#、Python、Java);
  • 内置安全(线程隔离、日志审计)和多种数据源/向量库连接。

适用场景:

  • 面向企业的应用开发,后台业务开发者;
  • 想在已有系统中"注入"LLM能力,或构建企业级自动化流程(如智能审批、知识挖掘等),并需要生产级可控性的场景。

🧠 Letta (MemGPT):持久记忆、多用户环境

Letta(前身 MemGPT)是一个注重长期记忆和多 Agent 环境 的框架。它允许每个智能体拥有可持久化的记忆,能够在多轮对话和任务中"记得"之前发生的事情,并且这些记忆对模型透明可审计。Letta 的核心理念是:AI Agent 不仅仅是问答的临时产物,而是可以维护持久化记忆库的长期伙伴。它提供服务端运行环境,Agent 在 Letta 服务器中运行,用户和多模型共享记忆数据。

总之,Letta 更像是一个Agent 操作系统 :它管理不同用户、不同模型的智能体,负责存储和检索记忆、协调任务执行。中提到,Letta 是用于构建有状态 Agent 的框架,具有高级推理能力和透明的长期记忆。开发者可以通过 REST API 或 SDK 和这些 Agent 交互。适用于需要用户画像+连续交互、复杂对话历史管理的场景,比如智能客服助手、个人 AI 助手等。

特点: 开源框架,支持持久化记忆(分为智能体自我和用户信息);多智能体和多用户同时运行;提供可视化操作界面(ADE)查看记忆和步骤。适用场景: 场景需要"永远记得"用户信息和对话历史,如长期助理、教育辅导机器人,或者多个模型协作的系统。

📚 LlamaIndex:RAG 与企业私有知识 Agent 框架

LlamaIndex(旧称 GPT Index)是一个以数据为中心 的框架,用于构建以私有数据为基础的智能问答和智能体应用。它专注于文档摄取与索引 :提供各种数据连接器,把 API、PDF、数据库等数据源摄取进来,构建索引,以便 LLM 快速检索。你可以把 LlamaIndex 想象成一个专业的知识管家:它帮你把企业内部知识库、文档变成智能体可读的结构化内存,然后 AI 只需要 查询 而不用"重新学习"。

特点: 数据框架,擅长 RAG(检索增强生成)场景;提供检索索引、关系图等模块,支持对接各种存储和查询后端;可以轻松接入 LangChain 等其他框架。适用场景: 企业级知识库问答、文档助手、行业专属智能体等。任何场景下,需要 Agent 直接在公司内部文档和知识上进行推理回答,而不是凭空让模型"想"答案的时候。

🚀 OpenAI Agents SDK:升级版 Swarm,简约高效

OpenAI Agents SDK (原名 Swarm)是 OpenAI 推出的轻量级多智能体开发包,专注于简洁易用。

它最大的特点是原生使用函数调用(function call)做任务交接,把交接本身当作一种"工具"来处理。

Agents SDK 提供了 Agent、Handoffs(任务委派)、Guardrails(护栏)和 Tracing(追踪)等机制,帮助开发者以极简的方式构建多 Agent 工作流。可以说,它融合了 Swarm 的灵活性与企业部署能力:

对新手友好,代码量少,但依然支持生产环境的可观测性和可靠性。

特点:

  • 轻量级、少抽象;
  • 专注"函数式工作流":将微服务/函数作为 Agent 的工具;
  • 继承了 Swarm 的任务交接设计;支持构建可追踪、多角色协作的智能体系统。

适用场景: 快速搭建多 Agent 协同应用,比如需要不同 Agent 互相传递任务的场景(简易的问答接力、流程分工)。喜欢"少即是多"的团队,将其部署到生产环境做落地尝试。

对比小结:框架功能矩阵、GitHub 热度与适用场景

下面我们给各框架做个对比总结表格(功能矩阵仅列关键点,GitHub Stars 数据截至2025 年初):

框架 核心功能亮点 GitHub Stars 适用人群/场景
🧱Coze 零代码可视化智能体平台(多模型接入、多插件、多终端发布) --- 产品/运营:无需开发、快速验证AI应用
🔧Dify 低代码 LLM 平台(集成 RAG、Agent、模型管理、工作流编排) ~99.1k 开发者:快速构建垂直问答、知识检索助手
🎨LangFlow 可视化 LangChain 流水线编辑器(拖拽组件、前后端同步调试) ~63.8k 前后端协同:原型设计、可视化调试 LangChain 应用
🌐LangChain 万能编排框架(Prompts/Chains/Memory/Agents 全家桶) ~108k AI 工程师:构建复杂 Agent 和多步骤应用
🤖AutoGen 多Agent 对话框架(可定制智能体、混合人机+工具交互) ~45.1k 研究/实验:多 Agent 协作、对话系统研究
👥CrewAI 多智能体团队协作(角色扮演智能体+Flow 事件驱动流程) ~32.1k 研究/实验:模拟智能体团队、复杂工作流自动化
💼Semantic Kernel 企业级 SDK(插件化技能、跨语言、可观测、可审计) ~24.8k 企业开发:向传统应用注入 AI,构建可控的智能体系统
🧠Letta (MemGPT) 持久记忆 Agent 平台(长期记忆、透明追踪、多用户) ~16.6k 长期助手:复杂对话、个性化助理、协作型智能体
📚LlamaIndex 知识库/检索框架(文档摄取、构建索引、RAG 检索) ~41.9k 知识密集:企业内部问答、文档助手、领域模型构建
🚀OpenAI Agents SDK 轻量级多Agent 工具(函数式交接、灵活编排、Swarm 升级版) ~10.7k 快速开发:需要快速搭建 Agent 协同的中小项目(生产版)

通过上表可以看到,不同框架各有侧重点:**

**

Coze/Dify/LangFlow 更适合"低门槛"场景,帮助产品或前端同学快速上手;

LangChain/Semantic Kernel/LlamaIndex/OpenAI Agents 则是面向后端和AI 工程师的重型武器,支持高度自定义和大型项目;**

**

AutoGen/CrewAI/Letta 则偏重于多 Agent 协作和记忆管理,是科研和创新型应用的实验平台。

选型时可以根据项目需求和团队技术栈来定:是要"零敲代码 快速 Demo",还是要"全面掌控 复杂流程",抑或是研究"团队协作智能"。

希望这份全景盘点能帮助你在 AI Agent 框架海洋中破局前进!🚢✨

📄 参考资料:

  • 上文中的框架功能与特点均参考了官方文档和社区资源。
  • 各框架的GitHub星标由对应项目的 github 页面统计。
框架 github 地址
🔧 Dify github.com/langgenius/...
🎨 LangFlow github.com/langflow-ai...
🌐 LangChain github.com/langchain-a...
🤖 AutoGen github.com/microsoft/a...
👥 CrewAI github.com/crewAIInc/c...
💼 Semantic Kernel github.com/microsoft/s...
🧠 Letta (MemGPT) github.com/letta-ai/le...
📚LlamaIndex github.com/run-llama/l...
🚀OpenAI Agents SDK github.com/openai/open...

关注《程序员AI破局指南》,这里有 AI+编程 的硬核干货,助你在这波技术浪潮中乘风破浪!

相关推荐
倔强的石头_1 分钟前
Trae 在低代码 / 无代码开发中的创新应用
ai编程
我是哪吒3 分钟前
分布式微服务系统架构第144集:FastAPI全栈开发教育系统
后端·面试·github
该换个名儿了4 分钟前
git多个commit合并成一个
前端·git
LaoZhangAI7 分钟前
2025最新OpenAI组织验证失败完全解决方案:8种有效方法彻底修复【实战指南】
前端·后端
CodeAgent11 分钟前
【MCP 第二篇】实现一个简易的MCP
ai编程·mcp
siwangqishiq219 分钟前
Vulkan Tutorial 教程翻译(三) 绘制三角形 2.1 安装
前端
LaughingZhu19 分钟前
PH热榜 | 2025-06-05
前端·人工智能·经验分享·搜索引擎·产品运营
大模型真好玩20 分钟前
最强大模型评测工具EvalScope——模型好不好我自己说了算!
前端·人工智能·python
林爱玩ai23 分钟前
🌟 什么是 Playwright MCP?
ai编程
Dream耀36 分钟前
CSS选择器完全手册:精准控制网页样式的艺术
前端·css·html