【Stable Diffusion 1.5 】在 Unet 中每个 Cross Attention 块中的张量变化过程

系列文章目录


文章目录


前言

特征图 (Latent) 尺寸和注意力图(attention map)尺寸在扩散模型中有差异,是由于模型架构和注意力机制的特性决定的。

特征图和注意力图的尺寸差异原因

  1. 不同的功能目的

    • 特征图(Feature Maps):承载图像的语义和视觉特征,维持空间结构
    • 注意力图(Attention Maps):表示不同位置之间的关联强度,是一种关系矩阵
  2. UNet架构中的特征图尺寸

    在U-Net中,特征图的尺寸在不同层级有变化:

    • 输入图像通常是 512×512 或 256×256
    • 下采样路径(Encoder):尺寸逐渐缩小 (512→256→128→64→32→16...)
    • 上采样路径(Decoder):尺寸逐渐增大 (16→32→64→128→256→512...)

    在Break-a-Scene代码中,我们看到特征图尺寸被下采样到64×64:

    python 复制代码
    downsampled_mask = F.interpolate(input=max_masks, size=(64, 64))
  3. 注意力机制中的尺寸计算

    注意力机制处理的是"token"之间的关系,其中:

    • 自注意力(Self-Attention):特征图中的每个位置视为一个token
    • 交叉注意力(Cross-Attention):文本序列中的token与特征图中的位置建立关联

    如果特征图尺寸是h×w,则自注意力矩阵的尺寸是(hw)×(hw),这是一个平方关系

    在代码中,注意力图通常被下采样到16×16:

    python 复制代码
    GT_masks = F.interpolate(input=batch["instance_masks"][batch_idx], size=(16, 16))
  4. 计算效率考虑

    • 注意力计算的复杂度是O(n²),其中n是token数量
    • 对于64×64的特征图,如果直接计算自注意力,需要处理4096×4096的矩阵
    • 为了降低计算量,通常在较低分辨率(如16×16)的特征图上计算注意力,这样只需处理256×256的矩阵

在Break-a-Scene中的具体实现

在Break-a-Scene中,这些尺寸差异体现在:

  1. 两种不同的损失计算

    a. 掩码损失(Masked Loss):应用在64×64的 Latent 上

    python 复制代码
    max_masks = torch.max(batch["instance_masks"], axis=1).values
    downsampled_mask = F.interpolate(input=max_masks, size=(64, 64))
    model_pred = model_pred * downsampled_mask
    target = target * downsampled_mask

    b. 注意力损失(Attention Loss):应用在16×16的注意力图上

    python 复制代码
    GT_masks = F.interpolate(input=batch["instance_masks"][batch_idx], size=(16, 16))
    agg_attn = self.aggregate_attention(res=16, from_where=("up", "down"), is_cross=True, select=batch_idx)
  2. 注意力存储的筛选

    在存储注意力图时,只保留小尺寸的注意力图:

    python 复制代码
    def forward(self, attn, is_cross: bool, place_in_unet: str):
        key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
        if attn.shape[1] <= 32**2:  # 只保存小于或等于32×32的注意力图
            self.step_store[key].append(attn)
        return attn
  3. 注意力聚合

    在聚合不同层的注意力时,确保只使用匹配目标分辨率的注意力图:

    python 复制代码
    def aggregate_attention(self, res: int, from_where: List[str], is_cross: bool, select: int):
        # ...
        num_pixels = res**2
        for location in from_where:
            for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]:
                if item.shape[1] == num_pixels:  # 只选择匹配分辨率的注意力图
                    cross_maps = item.reshape(self.args.train_batch_size, -1, res, res, item.shape[-1])[select]
                    out.append(cross_maps)
        # ...

总结

特征图和注意力图尺寸的差异主要是因为:

  1. 它们在模型中的功能不同
  2. 注意力计算的计算复杂度要求在较低分辨率上进行
  3. UNet架构中的不同层级有不同的特征图尺寸
  4. 为了平衡精度和计算效率,Break-a-Scene使用不同分辨率的特征图和注意力图来计算不同类型的损失

这种设计使得Break-a-Scene能够有效地学习token与图像区域之间的对应关系,同时保持计算效率。

相关推荐
空白诗1 天前
CANN ops-nn 算子解读:Stable Diffusion 图像生成中的 Conv2D 卷积实现
深度学习·计算机视觉·stable diffusion
学易1 天前
第十五节.别人的工作流,如何使用和调试(上)?(2类必现报错/缺失节点/缺失模型/思路/实操/通用调试步骤)
人工智能·ai作画·stable diffusion·报错·comfyui·缺失节点
心疼你的一切2 天前
基于CANN仓库算力手把手实现Stable Diffusion图像生成(附完整代码+流程图)
数据仓库·深度学习·stable diffusion·aigc·流程图·cann
Niuguangshuo3 天前
DALL-E 3:如何通过重构“文本描述“革新图像生成
人工智能·深度学习·计算机视觉·stable diffusion·重构·transformer
Niuguangshuo3 天前
深入解析 Stable Diffusion XL(SDXL):改进潜在扩散模型,高分辨率合成突破
stable diffusion
Niuguangshuo3 天前
深入解析Stable Diffusion基石——潜在扩散模型(LDMs)
人工智能·计算机视觉·stable diffusion
迈火3 天前
SD - Latent - Interposer:解锁Stable Diffusion潜在空间的创意工具
人工智能·gpt·计算机视觉·stable diffusion·aigc·语音识别·midjourney
迈火11 天前
Facerestore CF (Code Former):ComfyUI人脸修复的卓越解决方案
人工智能·gpt·计算机视觉·stable diffusion·aigc·语音识别·midjourney
重启编程之路11 天前
Stable Diffusion 参数记录
stable diffusion
孤狼warrior14 天前
图像生成 Stable Diffusion模型架构介绍及使用代码 附数据集批量获取
人工智能·python·深度学习·stable diffusion·cnn·transformer·stablediffusion