效果展示
首先我们通过创建场景,为场景添加1个平行光,1个平面,1 个球体;并渲染带阴影的场景。
ini
const settings = {
cameraX: 6,
cameraY: 12,
posX: -3.5,
posY: 7.5,
posZ: 5.0,
targetX: 3.5,
targetY: 0,
targetZ: 3.5,
projWidth: 10,
projHeight: 10,
perspective: false,
fieldOfView: 120,
bias: -0.006
};
export function DirectionLightShadowInThree(canvas: HTMLCanvasElement) {
const { width, height } = canvas.getBoundingClientRect();
const aspect = width / height;
const scene = new Scene();
const renderer = new WebGL1Renderer({
canvas
});
renderer.shadowMap.enabled = true;
renderer.outputColorSpace = LinearSRGBColorSpace;
// renderer.shadowMap.type = PCFSoftShadowMap;
// renderer.outputEncoding = THREE.sRGBEncoding;
// 这个开启才会渲染阴影贴图
// 创建一个数字纹理
const data = new Uint8Array([ // data
0xFF, 0xCC, 0xFF, 0xCC, 0xFF, 0xCC, 0xFF, 0xCC,
0xCC, 0xFF, 0xCC, 0xFF, 0xCC, 0xFF, 0xCC, 0xFF,
0xFF, 0xCC, 0xFF, 0xCC, 0xFF, 0xCC, 0xFF, 0xCC,
0xCC, 0xFF, 0xCC, 0xFF, 0xCC, 0xFF, 0xCC, 0xFF,
0xFF, 0xCC, 0xFF, 0xCC, 0xFF, 0xCC, 0xFF, 0xCC,
0xCC, 0xFF, 0xCC, 0xFF, 0xCC, 0xFF, 0xCC, 0xFF,
0xFF, 0xCC, 0xFF, 0xCC, 0xFF, 0xCC, 0xFF, 0xCC,
0xCC, 0xFF, 0xCC, 0xFF, 0xCC, 0xFF, 0xCC, 0xFF,
]);
// const dataTexture = new DataTexture(data, 8, 8, LuminanceFormat, UnsignedByteType)
// dataTexture.needsUpdate = true;
// create a buffer with color data
const _width = 8;
const _height = 8;
const camera = new PerspectiveCamera(60, aspect, 1, 2000);
camera.position.set(
settings.cameraX,
settings.cameraY,
15
);
camera.lookAt(new Vector3())
// // used the buffer to create a DataTexture
const texture = new DataTexture( data, _width, _height, LuminanceFormat, UnsignedByteType);
// texture.mipmaps = [texture]
texture.needsUpdate = true;
const dirLight = new DirectionalLight();
dirLight.castShadow = true;
dirLight.target.position.set( 0, 0, 0 );
// const lighthelper = new DirectionalLightHelper(dirLight);
const planeMat = new MeshPhongMaterial({
map: texture,
color: new Color(0.5, 0.5, 1)
});
const sphereMat = new MeshPhongMaterial({
map: texture,
color: new Color(1, 0.5, 0.5)
});
const sphereGeometry = new SphereGeometry(1, 32, 24);
const planeGeo = new PlaneGeometry(20, 20);
dirLight.position.set(settings.posX, settings.posY, settings.posZ);
dirLight.lookAt(new Vector3())
const plane = new Mesh(planeGeo, planeMat);
plane.receiveShadow = true;
plane.rotation.x = - 0.5 * Math.PI;
const sphere = new Mesh(sphereGeometry, sphereMat);
sphere.castShadow = true;
sphere.position.set(2, 3, 4);
// sphere.updateMatrixWorld();
scene.add(plane)
scene.add(dirLight)
scene.add(sphere)
renderer.render(scene, camera);
}
threejs 渲染阴影的前置条件是
- 开启渲染器的阴影贴图 就是 renderer.shadowMap.enabled = true;
- 对需要投身阴影的模型设置 castShadow 属性为 true
- 对需要能产生阴影的光设置 castShadow 属性为 true
- 需要接收阴影的模型设置 receiveShadow 属性为 true
最终效果如下图所示

Threejs 是如何产生模型阴影的
- 根据灯光信息,渲染阴影贴图
1.1 首先记录能产生阴影的灯光
csharp
// projectObject 函数内会有这样一段,处理灯光
if ( object.isLight ) {
currentRenderState.pushLight( object );
if ( object.castShadow ) {
currentRenderState.pushShadow( object );
}
}
1.2 根据灯光 执行WebGLShadowMap 的render 渲染阴影贴图 // 渲染灯光下的深度信息 // 渲染了尝试贴图后 shadowMap.render( shadowsArray, scene, camera );
以示例代码说明,此处用的是平行光。会在DirectilnalLightShadow 中保存渲染后的阴影深度信息(就是通过 WebGLRenderTarget 记录纹理,结合 MeshDepthMaterial)。
1.3 将贴图信息写入着色器中,供后面生成程序时用

在 setupLights 方法中会将相应光的贴图信息写入WebGLUniforms 中,后面传入着色器内。
ini
if ( light.isDirectionalLight ) {
// 平行光
const uniforms = cache.get( light );
uniforms.color.copy( light.color ).multiplyScalar( light.intensity * scaleFactor );
if ( light.castShadow ) {
const shadow = light.shadow;
const shadowUniforms = shadowCache.get( light );
shadowUniforms.shadowBias = shadow.bias;
shadowUniforms.shadowNormalBias = shadow.normalBias;
shadowUniforms.shadowRadius = shadow.radius;
shadowUniforms.shadowMapSize = shadow.mapSize;
state.directionalShadow[ directionalLength ] = shadowUniforms;
state.directionalShadowMap[ directionalLength ] = shadowMap;
state.directionalShadowMatrix[ directionalLength ] = light.shadow.matrix;
numDirectionalShadows ++;
}
state.directional[ directionalLength ] = uniforms;
directionalLength ++;
}
src/renderers/shaders/shaderChunk/shadowmap_pars_vertext.glsl
定义
ini
// 灯光的模型矩阵
uniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHT_SHADOWS ];
varying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];
src/renderers/shaders/shaderChunk/shadowmap_vertext.glsl 计算阴影纹理坐标
ini
#if NUM_DIR_LIGHT_SHADOWS > 0
#pragma unroll_loop_start
for ( int i = 0; i < NUM_DIR_LIGHT_SHADOWS; i ++ ) {
// worldPosition 模型的 position
shadowWorldPosition = worldPosition +
vec4( shadowWorldNormal * directionalLightShadows[ i ].shadowNormalBias, 0 );
vDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * shadowWorldPosition;
}
src/renderers/shaders/shaderChunk/shadowmap_pars_fragment.glsl 定义变量
ini
// 获取深度贴图
uniform sampler2D directionalShadowMap[ NUM_DIR_LIGHT_SHADOWS ];
// 贴图纹理坐标
varying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHT_SHADOWS ];
src/renderers/shaders/shaderChunk/lights_fragment_begin.glsl 中调用 getShadow 获取阴影信息
ini
#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )
DirectionalLight directionalLight;
#if defined( USE_SHADOWMAP ) && NUM_DIR_LIGHT_SHADOWS > 0
DirectionalLightShadow directionalLightShadow;
#endif
#pragma unroll_loop_start
for ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {
directionalLight = directionalLights[ i ];
getDirectionalLightInfo( directionalLight, geometry, directLight );
#if defined( USE_SHADOWMAP ) && ( UNROLLED_LOOP_INDEX < NUM_DIR_LIGHT_SHADOWS )
directionalLightShadow = directionalLightShadows[ i ];
directLight.color *= all( bvec2( directLight.visible, receiveShadow ) )
? getShadow( directionalShadowMap[ i ], directionalLightShadow.shadowMapSize, directionalLightShadow.shadowBias, directionalLightShadow.shadowRadius, vDirectionalShadowCoord[ i ] )
: 1.0;
#endif
RE_Direct( directLight, geometry, material, reflectedLight );
}