- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
CIFAR10彩色图片识别
这是我参加训练营的第二周
数据处理
好多项目的数据处理部分思路是相同的。
带入库函数
js
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
加上下面的这一句,,matplotlib
绘制的图形会直接嵌入在 Notebook 的输出单元格中显示,而不是弹出独立窗口。
js
%matplotlib inline
在我的电脑上pytorch和matplotlib容易冲突,加上下面的三行才能在pytorch环境中运行matplotlib
lua
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
os.environ["OMP_NUM_THREADS"] = "4" # 限制线程数
os.environ["MKL_NUM_THREADS"] = "4"
下载数据集
ini
train_ds = torchvision.datasets.CIFAR10('data',
train=True,
transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
download=True)
test_ds = torchvision.datasets.CIFAR10('data',
train=False,
transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
download=True)
下载好数据集,得取数据集,先用torch.utils.data.DataLoader取出,以32张图片为一组,取完所有的图片为一轮。训练集要取很多轮,所以要设置shuffle=True,每次取完一轮,顺序不一样。测试集不用取很多轮,所以不用设置。
ini
batch_size=32
train_dl=torch.utils.data.DataLoader(train_ds, batch_size=batch_size, shuffle=True)
test_dl=torch.utils.data.DataLoader(test_ds, batch_size=batch_size)
训练集有图片和标签,分别赋值给imgs,labels
ini
imgs,labels=next(iter(train_dl))
imgs.shape
看看训练集长什么样子的
ini
imgs,labels=next(iter(train_dl))
imgs.shape
画图
css
import numpy as np
plt.figure(figsize=(20,5))
for i,img in enumerate(imgs[:20]):
#进行轴变换
npimg=img.numpy().transpose((1,2,0))
plt.subplot(2,10,i+1)
plt.imshow(npimg,cmap=plt.cm.binary)
plt.axis('off')
plt.show()
继承torch的类,创建一个Model的类
ini
import torch.nn.functional as F
num_classes=10
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
#特征提取网络
self.conv1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3)
self.pool1=nn.MaxPool2d(2)
self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3)
self.pool2=nn.MaxPool2d(2)
self.conv3 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3)
self.pool3=nn.MaxPool2d(2)
#分类网络
self.fc1 = nn.Linear(512,256)
self.fc2 = nn.Linear(256,num_classes)
#前向传播
def forward(self, x):
x=self.pool1(self.conv1(x))
x=self.pool2(self.conv2(x))
x=self.pool3(self.conv3(x))
x=F.relu(self.fc1(x))
x=self.fc2(x)
return x
采用模型训练
scss
from torchinfo import summary
model = Model().to(device)
summary(model)
编写训练的函数
scss
def train(dataloader, model, loss_fn, optimizer):
size=len(dataloader.dataset)
num_batches=len(dataloader)
train_loss,train_acc=0,0
for X,y in dataloader:
X,y=X.to(device),y.to(device)
pred=model(X)
loss=loss_fn(pred,y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_acc+=(pred.argmax(1)==y).type(torch.float).sum().item()
train_loss+=loss.item()
train_acc/=size
train_loss/=size
return train_loss,train_acc
测试函数
ini
def test(dataloader, model, loss_fn):
model.eval()
size = len(dataloader.dataset)
num_batches = len(dataloader)
total_loss, correct = 0, 0
with torch.no_grad():
for imgs, labels in dataloader:
imgs, labels = imgs.to(device), labels.to(device)
pred = model(imgs)
loss = loss_fn(pred, labels)
total_loss += loss.item()
correct += (pred.argmax(1) == labels).type(torch.float).sum().item()
avg_loss = total_loss / num_batches
accuracy = correct / size
return avg_loss, accuracy
开始训练,训练5轮
ini
# 训练循环
epochs = 5 # 增加训练轮数
train_loss = []
train_acc = []
test_loss = []
test_acc = []
best_acc = 0.0 # 保存最佳模型
for epoch in range(epochs):
# 训练
epoch_train_loss, epoch_train_acc = train(train_dl, model, loss_fn, optimizer)
# 测试
epoch_test_loss, epoch_test_acc = test(test_dl, model, loss_fn)
# 更新学习率
scheduler.step()
# 记录结果
train_loss.append(epoch_train_loss)
train_acc.append(epoch_train_acc)
test_loss.append(epoch_test_loss)
test_acc.append(epoch_test_acc)
# 保存最佳模型
if epoch_test_acc > best_acc:
best_acc = epoch_test_acc
torch.save(model.state_dict(), 'best_model.pth')
# 打印结果
# if (epoch + 1) % 5 == 0 or epoch == 0:
template = 'Epoch:{:3d}, LR:{:.4f}, Train Acc:{:.2f}%, Train Loss:{:.4f}, Test Acc:{:.2f}%, Test Loss:{:.4f}'
current_lr = optimizer.param_groups[0]['lr']
print(template.format(
epoch + 1,
current_lr,
epoch_train_acc * 100,
epoch_train_loss,
epoch_test_acc * 100,
epoch_test_loss
))
print(f'Finished Training. Best Test Accuracy: {best_acc * 100:.2f}%')
画图
scss
from datetime import datetime
current_time = datetime.now()
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(train_acc, label='Train Accuracy')
plt.plot(train_acc, 'ro')
plt.plot(test_acc, label='Test Accuracy')
plt.plot(test_acc,'go')
plt.title('Accuracy')
plt.xlabel(current_time)
plt.grid(True)
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(train_loss, label='Train Loss')
plt.plot(train_loss, 'ro')
plt.plot(test_loss, label='Test Loss')
plt.plot(test_loss, 'go')
plt.title('Loss')
plt.xlabel(current_time)
plt.grid(True)
plt.legend()
plt.tight_layout()
# plt.savefig('training_curve.png')
plt.show()
运行截图
