python学习打卡day52

DAY 52 神经网络调参指南
知识点回顾:

  1. 随机种子
  2. 内参的初始化
  3. 神经网络调参指南
    1. 参数的分类
    2. 调参的顺序
    3. 各部分参数的调整心得

作业:对于day'41的简单cnn,看看是否可以借助调参指南进一步提高精度。

day41的简单CNN最后的结果,今天要做的是使用调参指南中的方法进一步提高精度

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np

# 定义通道注意力
class ChannelAttention(nn.Module):
    def __init__(self, in_channels, ratio=16):
        """
        通道注意力机制初始化
        参数:
            in_channels: 输入特征图的通道数
            ratio: 降维比例,用于减少参数量,默认为16
        """
        super().__init__()
        # 全局平均池化,将每个通道的特征图压缩为1x1,保留通道间的平均值信息
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        # 全局最大池化,将每个通道的特征图压缩为1x1,保留通道间的最显著特征
        self.max_pool = nn.AdaptiveMaxPool2d(1)
        # 共享全连接层,用于学习通道间的关系
        # 先降维(除以ratio),再通过ReLU激活,最后升维回原始通道数
        self.fc = nn.Sequential(
            nn.Linear(in_channels, in_channels // ratio, bias=False),  # 降维层
            nn.ReLU(),  # 非线性激活函数
            nn.Linear(in_channels // ratio, in_channels, bias=False)   # 升维层
        )
        # Sigmoid函数将输出映射到0-1之间,作为各通道的权重
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        """
        前向传播函数
        参数:
            x: 输入特征图,形状为 [batch_size, channels, height, width]
        返回:
            调整后的特征图,通道权重已应用
        """
        # 获取输入特征图的维度信息,这是一种元组的解包写法
        b, c, h, w = x.shape
        # 对平均池化结果进行处理:展平后通过全连接网络
        avg_out = self.fc(self.avg_pool(x).view(b, c))
        # 对最大池化结果进行处理:展平后通过全连接网络
        max_out = self.fc(self.max_pool(x).view(b, c))
        # 将平均池化和最大池化的结果相加并通过sigmoid函数得到通道权重
        attention = self.sigmoid(avg_out + max_out).view(b, c, 1, 1)
        # 将注意力权重与原始特征相乘,增强重要通道,抑制不重要通道
        return x * attention #这个运算是pytorch的广播机制

## 空间注意力模块
class SpatialAttention(nn.Module):
    def __init__(self, kernel_size=7):
        super().__init__()
        self.conv = nn.Conv2d(2, 1, kernel_size, padding=kernel_size//2, bias=False)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        # 通道维度池化
        avg_out = torch.mean(x, dim=1, keepdim=True)  # 平均池化:(B,1,H,W)
        max_out, _ = torch.max(x, dim=1, keepdim=True)  # 最大池化:(B,1,H,W)
        pool_out = torch.cat([avg_out, max_out], dim=1)  # 拼接:(B,2,H,W)
        attention = self.conv(pool_out)  # 卷积提取空间特征
        return x * self.sigmoid(attention)  # 特征与空间权重相乘

## CBAM模块
class CBAM(nn.Module):
    def __init__(self, in_channels, ratio=16, kernel_size=7):
        super().__init__()
        self.channel_attn = ChannelAttention(in_channels, ratio)
        self.spatial_attn = SpatialAttention(kernel_size)

    def forward(self, x):
        x = self.channel_attn(x)
        x = self.spatial_attn(x)
        return x
python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np

# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题

# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")

# 1. 数据预处理
# 训练集:使用多种数据增强方法提高模型泛化能力
train_transform = transforms.Compose([
    # 随机裁剪图像,从原图中随机截取32x32大小的区域
    transforms.RandomCrop(32, padding=4),
    # 随机水平翻转图像(概率0.5)
    transforms.RandomHorizontalFlip(),
    # 随机颜色抖动:亮度、对比度、饱和度和色调随机变化
    transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
    # 随机旋转图像(最大角度15度)
    transforms.RandomRotation(15),
    # 将PIL图像或numpy数组转换为张量
    transforms.ToTensor(),
    # 标准化处理:每个通道的均值和标准差,使数据分布更合理
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])

# 测试集:仅进行必要的标准化,保持数据原始特性,标准化不损失数据信息,可还原
test_transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])

# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(
    root='./data',
    train=True,
    download=True,
    transform=train_transform  # 使用增强后的预处理
)

test_dataset = datasets.CIFAR10(
    root='./data',
    train=False,
    transform=test_transform  # 测试集不使用增强
)

# 3. 创建数据加载器
batch_size = 80
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
python 复制代码
# 4. 定义CNN模型的定义(替代原MLP)
class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        
        # 初始卷积层
        self.conv_init = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU()
        )
        
        # 第一卷积块(含CBAM)
        self.block1 = nn.Sequential(
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(64),
            CBAM(64)  # 在卷积块后添加CBAM
        )
        self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
        self.drop1 = nn.Dropout2d(0.1)
        
        # 第二卷积块(含CBAM)
        self.block2 = nn.Sequential(
            nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=False),  # stride=2降维
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(128),
            CBAM(128)  # 在卷积块后添加CBAM
        )
        self.pool2 = nn.AvgPool2d(kernel_size=2, stride=2)
        self.drop2 = nn.Dropout2d(0.2)
        
        # 第三卷积块(含CBAM)
        self.block3 = nn.Sequential(
            nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=False),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
            nn.BatchNorm2d(256),
            CBAM(256)  # 在卷积块后添加CBAM
        )
        self.pool3 = nn.AdaptiveAvgPool2d(4)
        self.drop3 = nn.Dropout2d(0.3)
        
        # 全连接层
        self.fc = nn.Sequential(
            nn.Linear(256 * 4 * 4, 512),
            nn.BatchNorm1d(512),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(512, 128),
            nn.BatchNorm1d(128),
            nn.ReLU(),
            nn.Dropout(0.3),
            nn.Linear(128, 10)
        )
        
    def forward(self, x):
        x = self.conv_init(x)
        
        x = self.block1(x)
        x = self.pool1(x)
        x = self.drop1(x)
        
        x = self.block2(x)
        x = self.pool2(x)
        x = self.drop2(x)
        
        x = self.block3(x)
        x = self.pool3(x)
        x = self.drop3(x)
        
        x = x.view(-1, 256 * 4 * 4)
        x = self.fc(x)
        
        return x



# 初始化模型
model = CNN()
model = model.to(device)  # 将模型移至GPU(如果可用)
python 复制代码
criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器

# 引入学习率调度器,在训练过程中动态调整学习率--训练初期使用较大的 LR 快速降低损失,训练后期使用较小的 LR 更精细地逼近全局最优解。
# 在每个 epoch 结束后,需要手动调用调度器来更新学习率,可以在训练过程中调用 scheduler.step()
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
    optimizer,        # 指定要控制的优化器(这里是Adam)
    mode='min',       # 监测的指标是"最小化"(如损失函数)
    patience=3,       # 如果连续3个epoch指标没有改善,才降低LR
    factor=0.5        # 降低LR的比例(新LR = 旧LR × 0.5)
)
python 复制代码
# 5. 训练模型(记录每个 iteration 的损失)
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs):
    model.train()  # 设置为训练模式
    
    # 记录每个 iteration 的损失
    all_iter_losses = []  # 存储所有 batch 的损失
    iter_indices = []     # 存储 iteration 序号
    
    # 记录每个 epoch 的准确率和损失
    train_acc_history = []
    test_acc_history = []
    train_loss_history = []
    test_loss_history = []
    # 早停相关参数
    best_test_acc = 0.0
    patience = 5  # 早停耐心值,5个epoch
    counter = 0   # 计数器,记录连续未改进的epoch数
    early_stop = False  # 早停标志

    for epoch in range(epochs):
        running_loss = 0.0
        correct = 0
        total = 0
        
        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = data.to(device), target.to(device)  # 移至GPU
            
            optimizer.zero_grad()  # 梯度清零
            output = model(data)  # 前向传播
            loss = criterion(output, target)  # 计算损失
            loss.backward()  # 反向传播
            optimizer.step()  # 更新参数
            
            # 记录当前 iteration 的损失
            iter_loss = loss.item()
            all_iter_losses.append(iter_loss)
            iter_indices.append(epoch * len(train_loader) + batch_idx + 1)
            
            # 统计准确率和损失
            running_loss += iter_loss
            _, predicted = output.max(1)
            total += target.size(0)
            correct += predicted.eq(target).sum().item()
            
            # 每100个批次打印一次训练信息
            if (batch_idx + 1) % 100 == 0:
                print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} '
                      f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')
        
        # 计算当前epoch的平均训练损失和准确率
        epoch_train_loss = running_loss / len(train_loader)
        epoch_train_acc = 100. * correct / total
        train_acc_history.append(epoch_train_acc)
        train_loss_history.append(epoch_train_loss)
        
        # 测试阶段
        model.eval()  # 设置为评估模式
        test_loss = 0
        correct_test = 0
        total_test = 0
        
        with torch.no_grad():
            for data, target in test_loader:
                data, target = data.to(device), target.to(device)
                output = model(data)
                test_loss += criterion(output, target).item()
                _, predicted = output.max(1)
                total_test += target.size(0)
                correct_test += predicted.eq(target).sum().item()
        
        epoch_test_loss = test_loss / len(test_loader)
        epoch_test_acc = 100. * correct_test / total_test
        test_acc_history.append(epoch_test_acc)
        test_loss_history.append(epoch_test_loss)
        
        # 更新学习率调度器
        scheduler.step(epoch_test_loss)
        
        print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')
    # 早停检查
        if epoch_test_acc > best_test_acc:
            best_test_acc = epoch_test_acc
            counter = 0
            # 保存最佳模型(可选)
            torch.save(model.state_dict(), 'best_model.pth')
            print(f"找到更好的模型,准确率: {best_test_acc:.2f}%,已保存")
        else:
            counter += 1
            print(f"早停计数器: {counter}/{patience}")
            if counter >= patience:
                print(f"早停触发!连续 {patience} 个epoch测试准确率未提高")
                early_stop = True
        
        # 如果触发早停,跳出训练循环
        if early_stop:
            print(f"训练在第 {epoch+1} 个epoch提前结束")
            break
    
    # 绘制所有 iteration 的损失曲线
    plot_iter_losses(all_iter_losses, iter_indices)
    
    # 绘制每个 epoch 的准确率和损失曲线
    plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)
    
    return epoch_test_acc  # 返回最终测试准确率

# 6. 绘制每个 iteration 的损失曲线
def plot_iter_losses(losses, indices):
    plt.figure(figsize=(10, 4))
    plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')
    plt.xlabel('Iteration(Batch序号)')
    plt.ylabel('损失值')
    plt.title('每个 Iteration 的训练损失')
    plt.legend()
    plt.grid(True)
    plt.tight_layout()
    plt.show()

# 7. 绘制每个 epoch 的准确率和损失曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):
    epochs = range(1, len(train_acc) + 1)
    
    plt.figure(figsize=(12, 4))
    
    # 绘制准确率曲线
    plt.subplot(1, 2, 1)
    plt.plot(epochs, train_acc, 'b-', label='训练准确率')
    plt.plot(epochs, test_acc, 'r-', label='测试准确率')
    plt.xlabel('Epoch')
    plt.ylabel('准确率 (%)')
    plt.title('训练和测试准确率')
    plt.legend()
    plt.grid(True)
    
    # 绘制损失曲线
    plt.subplot(1, 2, 2)
    plt.plot(epochs, train_loss, 'b-', label='训练损失')
    plt.plot(epochs, test_loss, 'r-', label='测试损失')
    plt.xlabel('Epoch')
    plt.ylabel('损失值')
    plt.title('训练和测试损失')
    plt.legend()
    plt.grid(True)
    
    plt.tight_layout()
    plt.show()

# 8. 执行训练和测试
epochs = 40  # 增加训练轮次以获得更好效果
print("开始使用CNN训练模型...")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")

# # 保存模型
# torch.save(model.state_dict(), 'cifar10_cnn_model.pth')
# print("模型已保存为: cifar10_cnn_model.pth")

训练完成!最终测试准确率: 87.04%

@浙大疏精行

相关推荐
虾条_花吹雪2 小时前
5、Spring AI(MCPServer+MCPClient+Ollama)开发环境搭建_第一篇
数据库·人工智能·学习·spring·ai
uyeonashi7 小时前
【QT系统相关】QT文件
开发语言·c++·qt·学习
刘大浪9 小时前
uniapp 小程序 学习(一)
学习·小程序·uni-app
正儿八经的数字经10 小时前
人工智能100问☞第46问:AI是如何“学习”的?
人工智能·学习
xiaohanbao0910 小时前
day54 python对抗生成网络
网络·python·深度学习·学习
霸王蟹12 小时前
前端项目Excel数据导出同时出现中英文表头错乱情况解决方案。
笔记·学习·typescript·excel·vue3·react·vite
想成为大佬的每一天12 小时前
Linux驱动学习day4
学习
AgilityBaby13 小时前
Untiy打包安卓踩坑
android·笔记·学习·unity·游戏引擎
꒰ঌ小武໒꒱13 小时前
DeepSeek 引领前端开发变革:AI 助力学习与工作新路径
人工智能·学习·ai编程