day 51 python打卡

**作业:**day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高

复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torchvision import datasets, transforms, models 
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np
 
# 定义设备(优先使用GPU,无GPU则使用CPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")  # 添加此行
 
 
# 定义通道注意力
class ChannelAttention(nn.Module):
    def __init__(self, in_channels, ratio=16):
        """
        通道注意力机制初始化
        参数:
            in_channels: 输入特征图的通道数
            ratio: 降维比例,用于减少参数量,默认为16
        """
        super().__init__()
        # 全局平均池化,将每个通道的特征图压缩为1x1,保留通道间的平均值信息
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        # 全局最大池化,将每个通道的特征图压缩为1x1,保留通道间的最显著特征
        self.max_pool = nn.AdaptiveMaxPool2d(1)
        # 共享全连接层,用于学习通道间的关系
        # 先降维(除以ratio),再通过ReLU激活,最后升维回原始通道数
        self.fc = nn.Sequential(
            nn.Linear(in_channels, in_channels // ratio, bias=False),  # 降维层
            nn.ReLU(),  # 非线性激活函数
            nn.Linear(in_channels // ratio, in_channels, bias=False)   # 升维层
        )
        # Sigmoid函数将输出映射到0-1之间,作为各通道的权重
        self.sigmoid = nn.Sigmoid()
 
    def forward(self, x):
        """
        前向传播函数
        参数:
            x: 输入特征图,形状为 [batch_size, channels, height, width]
        返回:
            调整后的特征图,通道权重已应用
        """
        # 获取输入特征图的维度信息,这是一种元组的解包写法
        b, c, h, w = x.shape
        # 对平均池化结果进行处理:展平后通过全连接网络
        avg_out = self.fc(self.avg_pool(x).view(b, c))
        # 对最大池化结果进行处理:展平后通过全连接网络
        max_out = self.fc(self.max_pool(x).view(b, c))
        # 将平均池化和最大池化的结果相加并通过sigmoid函数得到通道权重
        attention = self.sigmoid(avg_out + max_out).view(b, c, 1, 1)
        # 将注意力权重与原始特征相乘,增强重要通道,抑制不重要通道
        return x * attention #这个运算是pytorch的广播机制
 
## 空间注意力模块
class SpatialAttention(nn.Module):
    def __init__(self, kernel_size=7):
        super().__init__()
        self.conv = nn.Conv2d(2, 1, kernel_size, padding=kernel_size//2, bias=False)
        self.sigmoid = nn.Sigmoid()
 
    def forward(self, x):
        # 通道维度池化
        avg_out = torch.mean(x, dim=1, keepdim=True)  # 平均池化:(B,1,H,W)
        max_out, _ = torch.max(x, dim=1, keepdim=True)  # 最大池化:(B,1,H,W)
        pool_out = torch.cat([avg_out, max_out], dim=1)  # 拼接:(B,2,H,W)
        attention = self.conv(pool_out)  # 卷积提取空间特征
        return x * self.sigmoid(attention)  # 特征与空间权重相乘
 
## CBAM模块
class CBAM(nn.Module):
    def __init__(self, in_channels, ratio=16, kernel_size=7):
        super().__init__()
        self.channel_attn = ChannelAttention(in_channels, ratio)
        self.spatial_attn = SpatialAttention(kernel_size)
 
    def forward(self, x):
        x = self.channel_attn(x)
        x = self.spatial_attn(x)
        return x
    
 
 
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
 
# 设置随机种子确保结果可复现(相同种子下随机操作结果一致)
torch.manual_seed(42)
np.random.seed(42)
 
# -------------------- 数据预处理(增加训练集增强) --------------------
# 训练集预处理:包含数据增强(随机翻转)和归一化
transform_train = transforms.Compose([
    transforms.Resize((32, 32)),  # 统一图像尺寸为32x32(与模型输入匹配)
    transforms.RandomHorizontalFlip(),  # 随机水平翻转增强
    transforms.ToTensor(), # 转换为PyTorch张量(形状变为[C,H,W],范围0-1)
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))  # 保持原归一化参数
])
 
# 测试集预处理:无数据增强(保持原始分布用于评估)
transform_test = transforms.Compose([
    transforms.Resize((32, 32)),
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
 
 
 
# -------------------- 加载自定义猫狗数据集 --------------------
# 从本地文件夹加载数据(要求结构:petlmages/cat/*.png 和 petlmages/dog/*.png)
dataset = torchvision.datasets.ImageFolder(
    root=r'D:\桌面\研究项目\打卡文件\机器学习、深度学习相关操作篇30天\day43\PetImages',  # 实际文件夹路径
    transform=transform_train  # 初始使用旧transform(后续会更新)
)
 
# 划分训练集和测试集(8:2比例)
train_size = int(0.8 * len(dataset))
test_size = len(dataset) - train_size
trainset, testset = torch.utils.data.random_split(dataset, [train_size, test_size])
 
# -------------------- 添加数据加载器 --------------------
# 定义批次大小(根据GPU内存调整,如64/128)
batch_size = 64
# 训练集加载器(打乱数据,启用多进程加速)
train_loader = DataLoader(
    trainset, 
    batch_size=batch_size, 
    shuffle=True,       # 训练时需要随机打乱数据
    num_workers=2       # 多进程加载(根据CPU核心数调整,0表示单进程)
)
# 测试集加载器(不打乱数据,保持原始顺序)
test_loader = DataLoader(
    testset, 
    batch_size=batch_size, 
    shuffle=False,      # 测试时无需打乱数据
    num_workers=2
)
 
# -------------------- 类别名称调整为猫狗 --------------------
classes = ('猫', '狗')  # 对应ImageFolder的类别顺序(按文件夹名排序,cat为0,dog为1)
 
 
 
# 关键修复:更新原始数据集的transform为新的训练集预处理(避免测试集继承旧尺寸)
dataset.transform = transform_train
# 测试集单独使用无增强的预处理
testset.dataset.transform = transform_test
 
# 自定义ResNet18模型,插入CBAM模块
class ResNet18_CBAM(nn.Module):
    def __init__(self, num_classes=10, pretrained=True, cbam_ratio=16, cbam_kernel=7):
        super().__init__()
        # 加载预训练ResNet18
        self.backbone = models.resnet18(pretrained=pretrained) 
        
        # 修改首层卷积以适应32x32输入(CIFAR10)
        self.backbone.conv1 = nn.Conv2d(
            in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False
        )
        self.backbone.maxpool = nn.Identity()  # 移除原始MaxPool层(因输入尺寸小)
        
        # 在每个残差块组后添加CBAM模块
        self.cbam_layer1 = CBAM(in_channels=64, ratio=cbam_ratio, kernel_size=cbam_kernel)
        self.cbam_layer2 = CBAM(in_channels=128, ratio=cbam_ratio, kernel_size=cbam_kernel)
        self.cbam_layer3 = CBAM(in_channels=256, ratio=cbam_ratio, kernel_size=cbam_kernel)
        self.cbam_layer4 = CBAM(in_channels=512, ratio=cbam_ratio, kernel_size=cbam_kernel)
        
        # 修改分类头
        self.backbone.fc = nn.Linear(in_features=512, out_features=num_classes)
 
    def forward(self, x):
        # 主干特征提取
        x = self.backbone.conv1(x)
        x = self.backbone.bn1(x)
        x = self.backbone.relu(x)  # [B, 64, 32, 32]
        
        # 第一层残差块 + CBAM
        x = self.backbone.layer1(x)  # [B, 64, 32, 32]
        x = self.cbam_layer1(x)
        
        # 第二层残差块 + CBAM
        x = self.backbone.layer2(x)  # [B, 128, 16, 16]
        x = self.cbam_layer2(x)
        
        # 第三层残差块 + CBAM
        x = self.backbone.layer3(x)  # [B, 256, 8, 8]
        x = self.cbam_layer3(x)
        
        # 第四层残差块 + CBAM
        x = self.backbone.layer4(x)  # [B, 512, 4, 4]
        x = self.cbam_layer4(x)
        
        # 全局平均池化 + 分类
        x = self.backbone.avgpool(x)  # [B, 512, 1, 1]
        x = torch.flatten(x, 1)  # [B, 512]
        x = self.backbone.fc(x)  # [B, 10]
        return x
    
# 初始化模型并移至设备
model = ResNet18_CBAM().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', patience=3, factor=0.5)
 
 
import time
 
# ======================================================================
# 4. 结合了分阶段策略和详细打印的训练函数
# ======================================================================
def set_trainable_layers(model, trainable_parts):
    print(f"\n---> 解冻以下部分并设为可训练: {trainable_parts}")
    for name, param in model.named_parameters():
        param.requires_grad = False
        for part in trainable_parts:
            if part in name:
                param.requires_grad = True
                break
 
def train_staged_finetuning(model, criterion, train_loader, test_loader, device, epochs):
    optimizer = None
    
    # 初始化历史记录列表,与你的要求一致
    all_iter_losses, iter_indices = [], []
    train_acc_history, test_acc_history = [], []
    train_loss_history, test_loss_history = [], []
 
    for epoch in range(1, epochs + 1):
        epoch_start_time = time.time()
        
        # --- 动态调整学习率和冻结层 ---
        if epoch == 1:
            print("\n" + "="*50 + "\n🚀 **阶段 1:训练注意力模块和分类头**\n" + "="*50)
            set_trainable_layers(model, ["cbam", "backbone.fc"])
            optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=1e-3)
        elif epoch == 6:
            print("\n" + "="*50 + "\n✈️ **阶段 2:解冻高层卷积层 (layer3, layer4)**\n" + "="*50)
            set_trainable_layers(model, ["cbam", "backbone.fc", "backbone.layer3", "backbone.layer4"])
            optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=1e-4)
        elif epoch == 21:
            print("\n" + "="*50 + "\n🛰️ **阶段 3:解冻所有层,进行全局微调**\n" + "="*50)
            for param in model.parameters(): param.requires_grad = True
            optimizer = optim.Adam(model.parameters(), lr=1e-5)
        
        # --- 训练循环 ---
        model.train()
        running_loss, correct, total = 0.0, 0, 0
        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = data.to(device), target.to(device)
            optimizer.zero_grad()
            output = model(data)
            loss = criterion(output, target)
            loss.backward()
            optimizer.step()
            
            # 记录每个iteration的损失
            iter_loss = loss.item()
            all_iter_losses.append(iter_loss)
            iter_indices.append((epoch - 1) * len(train_loader) + batch_idx + 1)
            
            running_loss += iter_loss
            _, predicted = output.max(1)
            total += target.size(0)
            correct += predicted.eq(target).sum().item()
            
            # 按你的要求,每100个batch打印一次
            if (batch_idx + 1) % 100 == 0:
                print(f'Epoch: {epoch}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} '
                      f'| 单Batch损失: {iter_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')
        
        epoch_train_loss = running_loss / len(train_loader)
        epoch_train_acc = 100. * correct / total
        train_loss_history.append(epoch_train_loss)
        train_acc_history.append(epoch_train_acc)
 
        # --- 测试循环 ---
        model.eval()
        test_loss, correct_test, total_test = 0, 0, 0
        with torch.no_grad():
            for data, target in test_loader:
                data, target = data.to(device), target.to(device)
                output = model(data)
                test_loss += criterion(output, target).item()
                _, predicted = output.max(1)
                total_test += target.size(0)
                correct_test += predicted.eq(target).sum().item()
        
        epoch_test_loss = test_loss / len(test_loader)
        epoch_test_acc = 100. * correct_test / total_test
        test_loss_history.append(epoch_test_loss)
        test_acc_history.append(epoch_test_acc)
        
        # 打印每个epoch的最终结果
        print(f'Epoch {epoch}/{epochs} 完成 | 耗时: {time.time() - epoch_start_time:.2f}s | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')
    
    # 训练结束后调用绘图函数
    print("\n训练完成! 开始绘制结果图表...")
    plot_iter_losses(all_iter_losses, iter_indices)
    plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)
    
    # 返回最终的测试准确率
    return epoch_test_acc
 
# ======================================================================
# 5. 绘图函数定义
# ======================================================================
def plot_iter_losses(losses, indices):
    plt.figure(figsize=(10, 4))
    plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')
    plt.xlabel('Iteration(Batch序号)')
    plt.ylabel('损失值')
    plt.title('每个 Iteration 的训练损失')
    plt.legend()
    plt.grid(True)
    plt.tight_layout()
    plt.show()
 
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):
    epochs = range(1, len(train_acc) + 1)
    plt.figure(figsize=(12, 4))
    plt.subplot(1, 2, 1)
    plt.plot(epochs, train_acc, 'b-', label='训练准确率')
    plt.plot(epochs, test_acc, 'r-', label='测试准确率')
    plt.xlabel('Epoch')
    plt.ylabel('准确率 (%)')
    plt.title('训练和测试准确率')
    plt.legend(); plt.grid(True)
    plt.subplot(1, 2, 2)
    plt.plot(epochs, train_loss, 'b-', label='训练损失')
    plt.plot(epochs, test_loss, 'r-', label='测试损失')
    plt.xlabel('Epoch')
    plt.ylabel('损失值')
    plt.title('训练和测试损失')
    plt.legend(); plt.grid(True)
    plt.tight_layout()
    plt.show()
 
# ======================================================================
# 6. 执行训练
# ======================================================================
model = ResNet18_CBAM().to(device)
criterion = nn.CrossEntropyLoss()
epochs = 10
train_model=train_staged_finetuning
 
print("开始使用带分阶段微调策略的ResNet18+CBAM模型进行训练...")
final_accuracy = train_staged_finetuning(model, criterion, train_loader, test_loader, device, epochs)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")
 
# torch.save(model.state_dict(), 'resnet18_cbam_finetuned.pth')
# print("模型已保存为: resnet18_cbam_finetuned.pth")
 
 
# 加载/训练模型(修改保存路径)
try:
    model.load_state_dict(torch.load('cat_dog_cnn.pth'))
    print("已加载预训练模型")
except:
    print("无法加载预训练模型,训练新模型...")
    # 补充缺失的4个参数:criterion, train_loader, test_loader, device
    train_model(model, criterion, train_loader, test_loader, device, epochs=1)  # 修正后调用
    torch.save(model.state_dict(), 'cat_dog_cnn.pth')  # 保存为猫狗模型
 
model.eval()
 
# Grad-CAM实现(未修改部分保持不变)
class GradCAM:
    def __init__(self, model, target_layer):
        self.model = model
        self.target_layer = target_layer
        self.gradients = None
        self.activations = None
        self.register_hooks()
        
    def register_hooks(self):
        def forward_hook(module, input, output):
            self.activations = output.detach()
        def backward_hook(module, grad_input, grad_output):
            self.gradients = grad_output[0].detach()
        self.target_layer.register_forward_hook(forward_hook)
        self.target_layer.register_backward_hook(backward_hook)
    
    def generate_cam(self, input_image, target_class=None):
        model_output = self.model(input_image)
        if target_class is None:
            target_class = torch.argmax(model_output, dim=1).item()
        self.model.zero_grad()
        one_hot = torch.zeros_like(model_output)
        one_hot[0, target_class] = 1
        model_output.backward(gradient=one_hot)
        gradients = self.gradients
        activations = self.activations
        weights = torch.mean(gradients, dim=(2, 3), keepdim=True)
        cam = torch.sum(weights * activations, dim=1, keepdim=True)
        cam = F.relu(cam)
        # Update interpolation size to match ResNet's input size (224x224)
        cam = F.interpolate(cam, size=(32, 32), mode='bilinear', align_corners=False)
        cam = cam - cam.min()
        cam = cam / cam.max() if cam.max() > 0 else cam
        return cam.cpu().squeeze().numpy(), target_class
 
# 可视化部分
import warnings
warnings.filterwarnings("ignore")
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False
 
# -------------------- 使用自定义测试集 --------------------
idx = np.random.randint(len(testset))  # 随机选择测试集中的图片
image, label = testset[idx]
print(f"选择的图像类别: {classes[label]}")
 
def tensor_to_np(tensor):
    img = tensor.cpu().numpy().transpose(1, 2, 0)
    # Update normalization to match ResNet's ImageNet stats
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    img = std * img + mean
    img = np.clip(img, 0, 1)
    return img
 
input_tensor = image.unsqueeze(0).to(device)
# 原错误行:model.model.layer4[-1].conv2 → 改为 model.backbone.layer4[-1].conv2
grad_cam = GradCAM(model, model.backbone.layer4[-1].conv2)  # 修正后:通过backbone访问ResNet层
heatmap, pred_class = grad_cam.generate_cam(input_tensor)
 
plt.figure(figsize=(12, 4))
plt.subplot(1, 3, 1)
plt.imshow(tensor_to_np(image))
plt.title(f"原始图像: {classes[label]}")
plt.axis('off')
 
plt.subplot(1, 3, 2)
plt.imshow(heatmap, cmap='jet')
plt.title(f"Grad-CAM热力图: {classes[pred_class]}")
plt.axis('off')
 
plt.subplot(1, 3, 3)
img = tensor_to_np(image)
heatmap_resized = np.uint8(255 * heatmap)
heatmap_colored = plt.cm.jet(heatmap_resized)[:, :, :3]
superimposed_img = heatmap_colored * 0.4 + img * 0.6
plt.imshow(superimposed_img)
plt.title("叠加热力图")
plt.axis('off')
 
plt.tight_layout()
plt.savefig('grad_cam_result.png')
plt.show()

@浙大疏锦行

相关推荐
Zephyrtoria1 小时前
区间合并:区间合并问题
java·开发语言·数据结构·算法
你怎么知道我是队长2 小时前
GO语言---匿名函数
开发语言·后端·golang
lansye2 小时前
侃侃AI编程
开发语言·qt·ai编程
2501_915374353 小时前
LangChain自动化工作流实战教程:从任务编排到智能决策
python·langchain·自动化
uyeonashi3 小时前
【QT】窗口详解
开发语言·c++·qt·学习
chilavert3184 小时前
深入剖析AI大模型:Prompt 开发工具与Python API 调用与技术融合
人工智能·python·prompt
Hello eveybody4 小时前
C++介绍整数二分与实数二分
开发语言·数据结构·c++·算法
jmlinux5 小时前
从 C 语言计算器到串口屏应用
c语言·开发语言
Mallow Flowers6 小时前
Python训练营-Day31-文件的拆分和使用
开发语言·人工智能·python·算法·机器学习
蓝婷儿6 小时前
Python 爬虫入门 Day 2 - HTML解析入门(使用 BeautifulSoup)
爬虫·python·html