sql中like and not like的优化

select * from ChkRepItemTaskOfSamle

where Rvt_ApplyID like '%XG%' and Rvt_ApplyID not like '%XGW%'

优化方案 1:使用 PATINDEX 函数(推荐)

sql

复制

下载

复制代码
SELECT * 
FROM ChkRepItemTaskOfSamle 
WHERE PATINDEX('%XG[^W]%', Rvt_ApplyID) > 0   -- 包含XG且下一个字符不是W
   OR PATINDEX('%XG', Rvt_ApplyID) > 0;       -- 处理XG在末尾的情况

优化方案 2:使用 CHARINDEX 组合

sql

复制

下载

复制代码
SELECT * 
FROM ChkRepItemTaskOfSamle 
WHERE CHARINDEX('XG', Rvt_ApplyID) > 0 
  AND CHARINDEX('XGW', Rvt_ApplyID) = 0;

优化方案 3:添加计算列 + 索引(大数据量适用)

sql

复制

下载

复制代码
-- 1. 添加持久化计算列
ALTER TABLE ChkRepItemTaskOfSamle
ADD IsTarget AS CAST(
    CASE 
        WHEN Rvt_ApplyID LIKE '%XG%' AND Rvt_ApplyID NOT LIKE '%XGW%' 
        THEN 1 
        ELSE 0 
    END AS BIT
) PERSISTED;

-- 2. 创建索引
CREATE INDEX IX_TargetFilter ON ChkRepItemTaskOfSamle(IsTarget);

-- 3. 查询时使用
SELECT * 
FROM ChkRepItemTaskOfSamle 
WHERE IsTarget = 1;

性能对比说明:

方法 优点 缺点 适用场景
原始双LIKE 简单直观 性能较差(两次全列扫描) 小数据量
PATINDEX 单次扫描,性能较好 语法稍复杂 中等数据量
CHARINDEX组合 函数效率高于LIKE 仍需两次扫描 通用场景
计算列+索引 大数据量极快 需要修改表结构,维护成本高 百万级以上数据频繁查询

推荐选择:

  • 中等数据量 :优先使用 PATINDEX 方案(方案1),它在保持单次扫描的同时更精确

  • 超大数据量:采用计算列+索引方案(方案3),但需权衡维护成本

  • 兼容性要求高 :使用 CHARINDEX 组合(方案2)

注意 :如果 Rvt_ApplyID 字段已建立索引,建议测试实际执行计划选择最优方案。在 SQL Server 2016+ 版本中,还可考虑使用 STRING_SPLIT 等函数进一步优化。

相关推荐
Hello.Reader3 小时前
Redis 延迟监控深度指南
数据库·redis·缓存
ybq195133454313 小时前
Redis-主从复制-分布式系统
java·数据库·redis
好奇的菜鸟6 小时前
如何在IntelliJ IDEA中设置数据库连接全局共享
java·数据库·intellij-idea
tan180°6 小时前
MySQL表的操作(3)
linux·数据库·c++·vscode·后端·mysql
满昕欢喜6 小时前
SQL Server从入门到项目实践(超值版)读书笔记 20
数据库·sql·sqlserver
Hello.Reader8 小时前
Redis 延迟排查与优化全攻略
数据库·redis·缓存
简佐义的博客8 小时前
破解非模式物种GO/KEGG注释难题
开发语言·数据库·后端·oracle·golang
爬山算法8 小时前
MySQL(116)如何监控负载均衡状态?
数据库·mysql·负载均衡
JAVA学习通10 小时前
Mybatis--动态SQL
sql·tomcat·mybatis
老纪的技术唠嗑局11 小时前
OceanBase PoC 经验总结(二)—— AP 业务
数据库