sql中like and not like的优化

select * from ChkRepItemTaskOfSamle

where Rvt_ApplyID like '%XG%' and Rvt_ApplyID not like '%XGW%'

优化方案 1:使用 PATINDEX 函数(推荐)

sql

复制

下载

复制代码
SELECT * 
FROM ChkRepItemTaskOfSamle 
WHERE PATINDEX('%XG[^W]%', Rvt_ApplyID) > 0   -- 包含XG且下一个字符不是W
   OR PATINDEX('%XG', Rvt_ApplyID) > 0;       -- 处理XG在末尾的情况

优化方案 2:使用 CHARINDEX 组合

sql

复制

下载

复制代码
SELECT * 
FROM ChkRepItemTaskOfSamle 
WHERE CHARINDEX('XG', Rvt_ApplyID) > 0 
  AND CHARINDEX('XGW', Rvt_ApplyID) = 0;

优化方案 3:添加计算列 + 索引(大数据量适用)

sql

复制

下载

复制代码
-- 1. 添加持久化计算列
ALTER TABLE ChkRepItemTaskOfSamle
ADD IsTarget AS CAST(
    CASE 
        WHEN Rvt_ApplyID LIKE '%XG%' AND Rvt_ApplyID NOT LIKE '%XGW%' 
        THEN 1 
        ELSE 0 
    END AS BIT
) PERSISTED;

-- 2. 创建索引
CREATE INDEX IX_TargetFilter ON ChkRepItemTaskOfSamle(IsTarget);

-- 3. 查询时使用
SELECT * 
FROM ChkRepItemTaskOfSamle 
WHERE IsTarget = 1;

性能对比说明:

方法 优点 缺点 适用场景
原始双LIKE 简单直观 性能较差(两次全列扫描) 小数据量
PATINDEX 单次扫描,性能较好 语法稍复杂 中等数据量
CHARINDEX组合 函数效率高于LIKE 仍需两次扫描 通用场景
计算列+索引 大数据量极快 需要修改表结构,维护成本高 百万级以上数据频繁查询

推荐选择:

  • 中等数据量 :优先使用 PATINDEX 方案(方案1),它在保持单次扫描的同时更精确

  • 超大数据量:采用计算列+索引方案(方案3),但需权衡维护成本

  • 兼容性要求高 :使用 CHARINDEX 组合(方案2)

注意 :如果 Rvt_ApplyID 字段已建立索引,建议测试实际执行计划选择最优方案。在 SQL Server 2016+ 版本中,还可考虑使用 STRING_SPLIT 等函数进一步优化。

相关推荐
likangbinlxa2 小时前
【Oracle11g SQL详解】UPDATE 和 DELETE 操作的正确使用
数据库·sql
r i c k2 小时前
数据库系统学习笔记
数据库·笔记·学习
野犬寒鸦2 小时前
从零起步学习JVM || 第一章:类加载器与双亲委派机制模型详解
java·jvm·数据库·后端·学习
IvorySQL3 小时前
PostgreSQL 分区表的 ALTER TABLE 语句执行机制解析
数据库·postgresql·开源
·云扬·3 小时前
MySQL 8.0 Redo Log 归档与禁用实战指南
android·数据库·mysql
野生技术架构师3 小时前
SQL语句性能优化分析及解决方案
android·sql·性能优化
IT邦德3 小时前
Oracle 26ai DataGuard 搭建(RAC到单机)
数据库·oracle
惊讶的猫4 小时前
redis分片集群
数据库·redis·缓存·分片集群·海量数据存储·高并发写
不爱缺氧i4 小时前
完全卸载MariaDB
数据库·mariadb