作业:手动构造类似的数据集(如cosx数据),观察不同的机器学习模型的差异
模型比较
1. 线性回归
python
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
# 线性回归
lr = LinearRegression()
lr.fit(X_train, y_train)
y_pred = lr.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print(f"Linear Regression MSE: {mse:.4f}")
2. 随机森林
python
from sklearn.ensemble import RandomForestRegressor
rf = RandomForestRegressor(n_estimators=100, random_state=42)
rf.fit(X_train, y_train)
y_pred = rf.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print(f"Random Forest MSE: {mse:.4f}")
3. 支持向量回归(SVR)
python
from sklearn.svm import SVR
from sklearn.preprocessing import StandardScaler
# 标准化数据
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
svr = SVR(kernel='rbf', C=100, gamma=0.1, epsilon=0.1)
svr.fit(X_train_scaled, y_train)
y_pred = svr.predict(X_test_scaled)
mse = mean_squared_error(y_test, y_pred)
print(f"SVR MSE: {mse:.4f}")
4. 简单RNN
python
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import SimpleRNN, Dense
# 重塑数据为RNN需要的形状 [样本数, 时间步数, 特征数]
X_train_rnn = X_train.reshape((X_train.shape[0], X_train.shape[1], 1))
X_test_rnn = X_test.reshape((X_test.shape[0], X_test.shape[1], 1))
# 构建RNN模型
model = Sequential([
SimpleRNN(50, activation='tanh', input_shape=(X_train_rnn.shape[1], 1)),
Dense(1)
])
model.compile(optimizer='adam', loss='mse')
# 训练模型
history = model.fit(X_train_rnn, y_train, epochs=50, batch_size=32,
validation_data=(X_test_rnn, y_test), verbose=0)
y_pred = model.predict(X_test_rnn)
mse = mean_squared_error(y_test, y_pred)
print(f"Simple RNN MSE: {mse:.4f}")
5. LSTM
python
from tensorflow.keras.layers import LSTM
# 构建LSTM模型
model = Sequential([
LSTM(50, activation='tanh', input_shape=(X_train_rnn.shape[1], 1)),
Dense(1)
])
model.compile(optimizer='adam', loss='mse')
# 训练模型
history = model.fit(X_train_rnn, y_train, epochs=50, batch_size=32,
validation_data=(X_test_rnn, y_test), verbose=0)
y_pred = model.predict(X_test_rnn)
mse = mean_squared_error(y_test, y_pred)
print(f"LSTM MSE: {mse:.4f}")
可视化比较
python
import matplotlib.pyplot as plt
# 绘制预测结果对比
plt.figure(figsize=(12, 6))
plt.plot(y_test[:100], label='True')
plt.plot(lr.predict(X_test)[:100], label='Linear Regression')
plt.plot(rf.predict(X_test)[:100], label='Random Forest')
plt.plot(svr.predict(X_test_scaled)[:100], label='SVR')
plt.plot(model.predict(X_test_rnn)[:100], label='LSTM')
plt.legend()
plt.title('Comparison of Model Predictions')
plt.show()
