打卡Day55

作业:手动构造类似的数据集(如cosx数据),观察不同的机器学习模型的差异

模型比较

1. 线性回归

python 复制代码
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

# 线性回归
lr = LinearRegression()
lr.fit(X_train, y_train)
y_pred = lr.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print(f"Linear Regression MSE: {mse:.4f}")

2. 随机森林

python 复制代码
from sklearn.ensemble import RandomForestRegressor

rf = RandomForestRegressor(n_estimators=100, random_state=42)
rf.fit(X_train, y_train)
y_pred = rf.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print(f"Random Forest MSE: {mse:.4f}")

3. 支持向量回归(SVR)

python 复制代码
from sklearn.svm import SVR
from sklearn.preprocessing import StandardScaler

# 标准化数据
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

svr = SVR(kernel='rbf', C=100, gamma=0.1, epsilon=0.1)
svr.fit(X_train_scaled, y_train)
y_pred = svr.predict(X_test_scaled)
mse = mean_squared_error(y_test, y_pred)
print(f"SVR MSE: {mse:.4f}")

4. 简单RNN

python 复制代码
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import SimpleRNN, Dense

# 重塑数据为RNN需要的形状 [样本数, 时间步数, 特征数]
X_train_rnn = X_train.reshape((X_train.shape[0], X_train.shape[1], 1))
X_test_rnn = X_test.reshape((X_test.shape[0], X_test.shape[1], 1))

# 构建RNN模型
model = Sequential([
    SimpleRNN(50, activation='tanh', input_shape=(X_train_rnn.shape[1], 1)),
    Dense(1)
])
model.compile(optimizer='adam', loss='mse')

# 训练模型
history = model.fit(X_train_rnn, y_train, epochs=50, batch_size=32, 
                    validation_data=(X_test_rnn, y_test), verbose=0)

y_pred = model.predict(X_test_rnn)
mse = mean_squared_error(y_test, y_pred)
print(f"Simple RNN MSE: {mse:.4f}")

5. LSTM

python 复制代码
from tensorflow.keras.layers import LSTM

# 构建LSTM模型
model = Sequential([
    LSTM(50, activation='tanh', input_shape=(X_train_rnn.shape[1], 1)),
    Dense(1)
])
model.compile(optimizer='adam', loss='mse')

# 训练模型
history = model.fit(X_train_rnn, y_train, epochs=50, batch_size=32, 
                    validation_data=(X_test_rnn, y_test), verbose=0)

y_pred = model.predict(X_test_rnn)
mse = mean_squared_error(y_test, y_pred)
print(f"LSTM MSE: {mse:.4f}")

可视化比较

python 复制代码
import matplotlib.pyplot as plt

# 绘制预测结果对比
plt.figure(figsize=(12, 6))
plt.plot(y_test[:100], label='True')
plt.plot(lr.predict(X_test)[:100], label='Linear Regression')
plt.plot(rf.predict(X_test)[:100], label='Random Forest')
plt.plot(svr.predict(X_test_scaled)[:100], label='SVR')
plt.plot(model.predict(X_test_rnn)[:100], label='LSTM')
plt.legend()
plt.title('Comparison of Model Predictions')
plt.show()
相关推荐
倔强青铜三12 分钟前
苦练Python第5天:字符串从入门到格式化
人工智能·python·面试
winfredzhang14 分钟前
从Markdown到PPT:用Python打造专业演示文稿转换器
python·markdown·转换·pptx
JJ1M81 小时前
前缀和+贪心总结,基于每日一题力扣3439、3440
python·算法·leetcode
Skrrapper2 小时前
Flask 入门到实战(2):使用 SQLAlchemy 打造可持久化的数据层
后端·python·flask
云空2 小时前
《探索电脑麦克风声音采集多窗口实时可视化技术》
人工智能·python·算法
feihui2 小时前
记一次 Python 服务 TCE 实例进程异常退出排查
python·gunicorn
超龄超能程序猿3 小时前
使用 Python 对本地图片进行图像分类
开发语言·人工智能·python·机器学习·分类·数据挖掘·scipy
谢斯3 小时前
[python]在drf中使用drf_spectacular
python·django
我爱一条柴ya3 小时前
【AI大模型】RAG系统组件:向量数据库(ChromaDB)
数据库·人工智能·pytorch·python·ai·ai编程
天天爱吃肉82183 小时前
从零到一:深度解析汽车标定技术体系与实战策略
python·嵌入式硬件·自动化·汽车