C. Bertown Subway

题目解析

通过分析题目得到,车站之间回形成环。题目要求的是通过改变两个数p[i],使得车站到其他车站的可达数量最大化(便利最大化)。因为每一个i对应的pi值都是不同的,所以只能通过交换两个数来实现。

将车站到车站之间的路径可以构成环,环中的每个车站都可以到达其他的车站,若环的长度是a,则车站可达的数量为a的2次方

题目要求可达的数量最大化,则只需要让两个长度最大的环连接到一起即可。若这两个环的长度分别为a和b,则两个连接在一起形成的大环的可达数量(便利度)为(a + b)^ 2。

利用上述思路编写的代码如下:

cpp 复制代码
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
#define MAXN 100000 + 5
#define ll long long

int p[MAXN];//存储站信息
bool visited[MAXN];//用于判断当前站是否被访问了,避免重复访问环
int main()
{
    vector<ll> v;//存储所有环的长度
    int n;
    ll r = 0;//结果

    cin >> n;
    for(int i = 1; i <= n; i++)cin >> p[i];

    for(int i = 1; i <= n; i++)//i表示的是本站
    {
        if(visited[i] == true)continue;

        //利用后续的代码求环的长度,这一部分是最重要的
        ll cnt = 1;
        int x = p[i];//x是本站的目的站
        visited[x] = true;
        while(x != i)//如果说没有形成环继续执行
        {
            x = p[x];
            visited[x] = true;
            cnt++;//这个cnt是环的长度
        }

        v.push_back(cnt);//将这个环的长度放进数组中
    }
    sort(v.begin(), v.end());//从小到大进行排序
    if(v.size() >= 2)//其中有大于等于2的环数
    {
        r = v[v.size() - 2] + v[v.size() - 1];
        //现在r的值是最大的两个环长度之和
        r = r * r;//现在r的值是将两个环组合在一起的数对总和
        //(从一个站到另一个站的所有方式之和)
        for(int i = 0; i < v.size() - 2; i++)
        {
            r += v[i] * v[i];
        }
    }else//只有一个环,直接是长度的平方
    {
        r = v[0] * v[0];
    }
    cout << r;
    return 0;
}
相关推荐
m0_570466416 分钟前
代码随想录算法训练营第二十八天 | 买卖股票的最佳实际、跳跃游戏、K次取反后最大化的数组和
java·开发语言·算法
吃着火锅x唱着歌13 分钟前
LeetCode 1537.最大得分
算法·leetcode·职场和发展
数模加油站13 分钟前
25高教社杯数模国赛【C题超高质量思路+可运行代码】第十弹
算法·数学建模·数模国赛·高教社杯全国大学生数学建模竞赛
ulias21227 分钟前
动态规划入门:从记忆化搜索到动态规划
算法·动态规划
山河君28 分钟前
webrtc之语音活动上——VAD能量检测原理以及源码详解
算法·音视频·webrtc·信号处理
THMAIL1 小时前
深度学习从入门到精通 - LSTM与GRU深度剖析:破解长序列记忆遗忘困境
人工智能·python·深度学习·算法·机器学习·逻辑回归·lstm
JuneXcy1 小时前
结构体简介
c语言·数据结构·算法
jiaway1 小时前
【C语言】第四课 指针与内存管理
c语言·开发语言·算法
菩提树下的凡夫1 小时前
瑞芯微RV1126目标识别算法Yolov8的部署应用
java·算法·yolo
多打代码2 小时前
2025.09.05 用队列实现栈 & 有效的括号 & 删除字符串中的所有相邻重复项
python·算法