一、整体思路
长网页文本往往超过 LLM 单次处理的 token 限制,我们需要设计一个 map-reduce 流水线来拆分、局部总结、归并:
- 
加载网页内容 
- 
拆分成可控大小的 chunk 
- 
对每个 chunk 做初步总结 (map) 
- 
汇总所有初步总结 (reduce) 
- 
如有需要递归 reduce 直到满足 token 限制 
- 
输出最终总结 
接下来我们用代码实现!
二、准备工作
1. 初始化 LLM
首先我们通过 init_chat_model 加载 LLM:
            
            
              python
              
              
            
          
          # llm_env.py
from langchain.chat_models import init_chat_model
llm = init_chat_model("gpt-4o-mini", model_provider="openai")三、主程序 main.py
1. 导入依赖 & 初始化
            
            
              python
              
              
            
          
          import os
import sys
sys.path.append(os.getcwd())
from langchain_community.document_loaders import WebBaseLoader
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain.chains.llm import LLMChain
from langchain_core.prompts import ChatPromptTemplate
from langchain_text_splitters import CharacterTextSplitter
import operator
from typing import Annotated, List, Literal, TypedDict
from langchain.chains.combine_documents.reduce import collapse_docs, split_list_of_docs
from langchain_core.documents import Document
from langgraph.constants import Send
from langgraph.graph import END, START, StateGraph
from llm_set import llm_env
llm = llm_env.llm2. 加载网页
            
            
              python
              
              
            
          
          loader = WebBaseLoader("https://en.wikipedia.org/wiki/Artificial_intelligence")
docs = loader.load()通过 WebBaseLoader 可以轻松加载网页文本到 docs 列表中。
3. 定义 Prompt 模板
- Map 阶段 Prompt
            
            
              python
              
              
            
          
          map_prompt = ChatPromptTemplate.from_messages(
    [("system", "Write a concise summary of the following: \\n\\n{context}")]
)- Reduce 阶段 Prompt
            
            
              python
              
              
            
          
          reduce_template = """
The following is a set of summaries:
{docs}
Take these and distill it into a final, consolidated summary
of the main themes.
"""
reduce_prompt = ChatPromptTemplate([("human", reduce_template)])4. 拆分文档 chunk
            
            
              python
              
              
            
          
          text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
split_docs = text_splitter.split_documents(docs)
print(f"Split into {len(split_docs)} chunks")将网页内容拆分成多个 chunk,chunk 大小设置 1000 tokens,便于单次处理。
5. 定义 Token 长度计算
            
            
              python
              
              
            
          
          token_max = 1000
def length_function(documents: List[Document]) -> int:
    return sum(llm.get_num_tokens(d.page_content) for d in documents)计算输入文档 token 总量,用于判断是否需要继续 collapse。
6. 定义状态
主状态:
            
            
              python
              
              
            
          
          class OverallState(TypedDict):
    contents: List[str]
    summaries: Annotated[list, operator.add]
    collapsed_summaries: List[Document]
    final_summary: strMap 阶段状态:
            
            
              python
              
              
            
          
          class SummaryState(TypedDict):
    content: str7. 生成初步 summary (Map 阶段)
            
            
              python
              
              
            
          
          def generate_summary(state: SummaryState):
    prompt = map_prompt.invoke(state["content"])
    response = llm.invoke(prompt)
    return {"summaries": [response.content]}8. Map 调度逻辑
            
            
              python
              
              
            
          
          def map_summaries(state: OverallState):
    return [
        Send("generate_summary", {"content": content}) for content in state["contents"]
    ]9. 收集 summary
            
            
              python
              
              
            
          
          def collect_summaries(state: OverallState):
    return {
        "collapsed_summaries": [Document(summary) for summary in state["summaries"]]
    }10. Reduce 逻辑
- 内部 reduce 函数
            
            
              python
              
              
            
          
          def _reduce(input: dict) -> str:
    prompt = reduce_prompt.invoke(input)
    response = llm.invoke(prompt)
    return response.content- Collapse summaries
            
            
              python
              
              
            
          
          def collapse_summaries(state: OverallState):
    docs_lists = split_list_of_docs(
        state["collapsed_summaries"],
        length_function,
        token_max,
    )
    results = []
    for doc_list in docs_lists:
        combined = collapse_docs(doc_list, _reduce)
        results.append(combined)
    return {"collapsed_summaries": results}11. 是否继续 collapse
            
            
              python
              
              
            
          
          def should_collapse(state: OverallState):
    num_tokens = length_function(state["collapsed_summaries"])
    if num_tokens > token_max:
        return "collapse_summaries"
    else:
        return "generate_final_summary"12. 生成最终 summary
            
            
              python
              
              
            
          
          def generate_final_summary(state: OverallState):
    response = _reduce(state["collapsed_summaries"])
    return {"final_summary": response}四、构建流程图 (StateGraph)
            
            
              python
              
              
            
          
          graph = StateGraph(OverallState)
graph.add_node("generate_summary", generate_summary)
graph.add_node("collect_summaries", collect_summaries)
graph.add_node("collapse_summaries", collapse_summaries)
graph.add_node("generate_final_summary", generate_final_summary)
graph.add_conditional_edges(START, map_summaries, ["generate_summary"])
graph.add_edge("generate_summary", "collect_summaries")
graph.add_conditional_edges("collect_summaries", should_collapse)
graph.add_conditional_edges("collapse_summaries", should_collapse)
graph.add_edge("generate_final_summary", END)
app = graph.compile()五、执行总结流程
            
            
              python
              
              
            
          
          for step in app.stream(
    {"contents": [doc.page_content for doc in split_docs]},
    {"recursion_limit": 10},
):
    print(list(step.keys()))通过 .stream() 启动整个流水线,传入切片后的 contents,流式输出每步结果,直到最终汇总完成。
六、总结
通过这个示例,你可以看到:
✅ 使用 LangChain + LLM 轻松实现 网页总结
✅ 设计了 自动 map-reduce 流程,支持长文本拆分和递归 reduce
✅ 通过 StateGraph 灵活编排流程、