Hadoop RPC 分层设计的哲学:高内聚、低耦合的最佳实践

Hadoop RPC

Hadoop RPC主要分为四个部分,分别是序列化层、函数调用层、网络传输层和服务器端处理框架,实现机制为:

  • 序列化层:主要作用是将结构化对象转为字节流以便于通过网络进行传输或写入持久存储。
  • 函数调用层:主要作用是定位要调用的函数并执行该参数,采用了java反射机制和动态代理实现了函数调用
  • 网络传输层:描述了client和server之间消息传输的方式,基于TCP/IP的socket机制
  • 服务器端处理框架:服务器端处理框架可被抽象为网络IO模型,采用了基于Reactor模式的事件驱动IO模型

参考文献

相关推荐
打码人的日常分享28 分钟前
运维服务方案,运维巡检方案,运维安全保障方案文件
大数据·运维·安全·word·安全架构
半夏陌离2 小时前
SQL 拓展指南:不同数据库差异对比(MySQL/Oracle/SQL Server 基础区别)
大数据·数据库·sql·mysql·oracle·数据库架构
A小弈同学4 小时前
新规则,新游戏:AI时代下的战略重构与商业实践
大数据·人工智能·重构·降本增效·电子合同
字节跳动数据平台5 小时前
一客一策:Data Agent 如何重构大模型时代的智能营销?
大数据·agent
用户Taobaoapi20147 小时前
京东图片搜索相似商品API开发指南
大数据·数据挖掘·数据分析
镭眸7 小时前
因泰立科技:用激光雷达重塑智能工厂物流生态
大数据·人工智能·科技
IT研究室9 小时前
大数据毕业设计选题推荐-基于大数据的贵州茅台股票数据分析系统-Spark-Hadoop-Bigdata
大数据·hadoop·spark·毕业设计·源码·数据可视化·bigdata
Lx35210 小时前
Hadoop异常处理机制:优雅处理失败任务
大数据·hadoop
小嵌同学10 小时前
Linux:malloc背后的实现细节
大数据·linux·数据库
IT毕设梦工厂11 小时前
大数据毕业设计选题推荐-基于大数据的国家基站整点数据分析系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·spark·毕业设计·源码·数据可视化