Hadoop RPC 分层设计的哲学:高内聚、低耦合的最佳实践

Hadoop RPC

Hadoop RPC主要分为四个部分,分别是序列化层、函数调用层、网络传输层和服务器端处理框架,实现机制为:

  • 序列化层:主要作用是将结构化对象转为字节流以便于通过网络进行传输或写入持久存储。
  • 函数调用层:主要作用是定位要调用的函数并执行该参数,采用了java反射机制和动态代理实现了函数调用
  • 网络传输层:描述了client和server之间消息传输的方式,基于TCP/IP的socket机制
  • 服务器端处理框架:服务器端处理框架可被抽象为网络IO模型,采用了基于Reactor模式的事件驱动IO模型

参考文献

相关推荐
微学AI2 小时前
面向大数据与物联网的下一代时序数据库选型指南:Apache IoTDB 解析与应用
大数据·物联网·时序数据库
人大博士的交易之路3 小时前
今日行情明日机会——20251113
大数据·数据挖掘·数据分析·缠论·道琼斯结构·涨停板
B站计算机毕业设计之家3 小时前
基于Python+Django+双协同过滤豆瓣电影推荐系统 协同过滤推荐算法 爬虫 大数据毕业设计(源码+文档)✅
大数据·爬虫·python·机器学习·数据分析·django·推荐算法
WLJT1231231234 小时前
方寸之间藏智慧:家用电器的进化与生活革新
大数据·人工智能
陈辛chenxin4 小时前
【大数据技术04】数据可视化
大数据·python·信息可视化
wangqiaowq4 小时前
在streampark运行paimon-flink-action-1.20.0.jar
大数据·flink·jar
wangqiaowq4 小时前
基于FLINK + PAIMON + StarRocks 分层构建流式湖仓
大数据
Hello.Reader5 小时前
用 Doris 托底实时明细与聚合Flink CDC Pipeline 的 Doris Sink 实战
大数据·flink
程途拾光1585 小时前
用流程图优化工作流:快速识别冗余环节,提升效率
大数据·论文阅读·人工智能·流程图·论文笔记