文章目录
-
- [1. 面向对象编程的核心概念](#1. 面向对象编程的核心概念)
-
- [1.1 类与对象的关系](#1.1 类与对象的关系)
- [1.2 封装(Encapsulation)](#1.2 封装(Encapsulation))
- [2. 继承与多态](#2. 继承与多态)
-
- [2.1 继承机制](#2.1 继承机制)
- [2.2 多重继承](#2.2 多重继承)
- [2.3 多态性](#2.3 多态性)
- [3. 特殊方法与运算符重载](#3. 特殊方法与运算符重载)
- [4. 抽象类与接口](#4. 抽象类与接口)
-
- [4.1 抽象基类](#4.1 抽象基类)
- [5. 组合与聚合](#5. 组合与聚合)
- [6. 属性管理](#6. 属性管理)
-
- [6.1 使用property装饰器](#6.1 使用property装饰器)
- [6.2 描述符协议](#6.2 描述符协议)
- [7. 元类与类装饰器](#7. 元类与类装饰器)
-
- [7.1 元类](#7.1 元类)
- [7.2 类装饰器](#7.2 类装饰器)
- [8. 设计模式实践](#8. 设计模式实践)
-
- [8.1 观察者模式](#8.1 观察者模式)
1. 面向对象编程的核心概念
面向对象编程(OOP)是一种编程范式,它将数据和操作数据的方法封装在一起,形成对象。Python作为一门多范式编程语言,对OOP提供了强大的支持。
1.1 类与对象的关系
类是对象的模板或蓝图,定义了对象的属性和行为。对象是类的实例,是具体的数据实体。这种关系类似于建筑图纸与实际建筑物的关系。
python
class Car:
def __init__(self, brand, model):
self.brand = brand
self.model = model
def start(self):
return f"{self.brand} {self.model} is starting"
# 创建对象实例
my_car = Car("Toyota", "Camry")
print(my_car.start()) # Toyota Camry is starting
1.2 封装(Encapsulation)
封装是将数据和方法绑定在一起,并限制对对象内部状态的直接访问。Python通过命名约定来实现封装:
- 公共属性:直接访问
- 受保护属性:以单下划线开头(_attribute)
- 私有属性:以双下划线开头(__attribute)
python
class BankAccount:
def __init__(self, balance):
self._balance = balance # 受保护属性
self.__account_number = "123456789" # 私有属性
def deposit(self, amount):
if amount > 0:
self._balance += amount
def get_balance(self):
return self._balance
def _internal_method(self): # 受保护方法
return "Internal processing"
2. 继承与多态
2.1 继承机制
继承允许一个类获得另一个类的属性和方法,促进代码重用并建立类之间的层次关系。
python
class Vehicle:
def __init__(self, brand, year):
self.brand = brand
self.year = year
def start(self):
return "Vehicle is starting"
def stop(self):
return "Vehicle is stopping"
class ElectricCar(Vehicle):
def __init__(self, brand, year, battery_capacity):
super().__init__(brand, year) # 调用父类构造函数
self.battery_capacity = battery_capacity
def charge(self):
return f"Charging {self.brand} with {self.battery_capacity}kWh battery"
def start(self): # 方法重写
return f"Electric {self.brand} is silently starting"
2.2 多重继承
Python支持多重继承,但需要注意方法解析顺序(MRO)。
python
class Flyable:
def fly(self):
return "Flying in the sky"
class Swimmable:
def swim(self):
return "Swimming in water"
class Duck(Flyable, Swimmable):
def __init__(self, name):
self.name = name
def quack(self):
return f"{self.name} says quack!"
# 查看方法解析顺序
print(Duck.__mro__)
2.3 多态性
多态性允许不同类的对象对同一消息做出不同的响应,通过统一的接口处理不同类型的对象。
python
class Shape:
def area(self):
raise NotImplementedError("Subclass must implement area method")
class Rectangle(Shape):
def __init__(self, width, height):
self.width = width
self.height = height
def area(self):
return self.width * self.height
class Circle(Shape):
def __init__(self, radius):
self.radius = radius
def area(self):
return 3.14159 * self.radius ** 2
# 多态性的体现
def print_area(shape):
print(f"Area: {shape.area()}")
shapes = [Rectangle(5, 3), Circle(4)]
for shape in shapes:
print_area(shape) # 同一接口,不同实现
3. 特殊方法与运算符重载
Python提供了丰富的特殊方法(魔术方法),允许类定义对象的行为。
python
class Vector:
def __init__(self, x, y):
self.x = x
self.y = y
def __str__(self):
return f"Vector({self.x}, {self.y})"
def __repr__(self):
return f"Vector({self.x!r}, {self.y!r})"
def __add__(self, other):
return Vector(self.x + other.x, self.y + other.y)
def __eq__(self, other):
return self.x == other.x and self.y == other.y
def __len__(self):
return int((self.x ** 2 + self.y ** 2) ** 0.5)
v1 = Vector(1, 2)
v2 = Vector(3, 4)
print(v1 + v2) # Vector(4, 6)
print(v1 == v2) # False
4. 抽象类与接口
4.1 抽象基类
使用abc模块创建抽象基类,强制子类实现特定方法。
python
from abc import ABC, abstractmethod
class Animal(ABC):
@abstractmethod
def make_sound(self):
pass
@abstractmethod
def move(self):
pass
def sleep(self): # 具体方法
return "Animal is sleeping"
class Dog(Animal):
def make_sound(self):
return "Woof!"
def move(self):
return "Dog is running"
# Animal() # 会报错,不能实例化抽象类
dog = Dog()
print(dog.make_sound()) # Woof!
5. 组合与聚合
组合是一种"has-a"关系,表示整体与部分的强关联。
python
class Engine:
def __init__(self, horsepower):
self.horsepower = horsepower
def start(self):
return f"Engine with {self.horsepower}HP is starting"
class Car:
def __init__(self, brand, engine):
self.brand = brand
self.engine = engine # 组合关系
def start(self):
return f"{self.brand}: {self.engine.start()}"
engine = Engine(200)
car = Car("BMW", engine)
print(car.start()) # BMW: Engine with 200HP is starting
6. 属性管理
6.1 使用property装饰器
python
class Temperature:
def __init__(self, celsius=0):
self._celsius = celsius
@property
def celsius(self):
return self._celsius
@celsius.setter
def celsius(self, value):
if value < -273.15:
raise ValueError("Temperature below absolute zero is not possible")
self._celsius = value
@property
def fahrenheit(self):
return (self._celsius * 9/5) + 32
@fahrenheit.setter
def fahrenheit(self, value):
self.celsius = (value - 32) * 5/9
temp = Temperature(25)
print(temp.fahrenheit) # 77.0
temp.fahrenheit = 86
print(temp.celsius) # 30.0
6.2 描述符协议
描述符提供了更高级的属性控制机制。
python
class Validator:
def __init__(self, min_value=0, max_value=100):
self.min_value = min_value
self.max_value = max_value
def __set_name__(self, owner, name):
self.name = name
def __get__(self, instance, owner):
if instance is None:
return self
return instance.__dict__[self.name]
def __set__(self, instance, value):
if not (self.min_value <= value <= self.max_value):
raise ValueError(f"{self.name} must be between {self.min_value} and {self.max_value}")
instance.__dict__[self.name] = value
class Student:
grade = Validator(0, 100)
def __init__(self, name, grade):
self.name = name
self.grade = grade # 使用描述符验证
7. 元类与类装饰器
7.1 元类
元类是创建类的类,控制类的创建过程。
python
class SingletonMeta(type):
_instances = {}
def __call__(cls, *args, **kwargs):
if cls not in cls._instances:
cls._instances[cls] = super().__call__(*args, **kwargs)
return cls._instances[cls]
class Database(metaclass=SingletonMeta):
def __init__(self):
self.connection = "Connected to database"
db1 = Database()
db2 = Database()
print(db1 is db2) # True,单例模式
7.2 类装饰器
类装饰器提供了修改类行为的简洁方式。
python
def add_logging(cls):
original_init = cls.__init__
def new_init(self, *args, **kwargs):
print(f"Creating instance of {cls.__name__}")
original_init(self, *args, **kwargs)
cls.__init__ = new_init
return cls
@add_logging
class Product:
def __init__(self, name, price):
self.name = name
self.price = price
product = Product("Laptop", 999) # 输出: Creating instance of Product
8. 设计模式实践
8.1 观察者模式
python
class Subject:
def __init__(self):
self._observers = []
self._state = None
def attach(self, observer):
self._observers.append(observer)
def detach(self, observer):
self._observers.remove(observer)
def notify(self):
for observer in self._observers:
observer.update(self._state)
def set_state(self, state):
self._state = state
self.notify()
class Observer:
def update(self, state):
print(f"Observer received update: {state}")
subject = Subject()
observer1 = Observer()
observer2 = Observer()
subject.attach(observer1)
subject.attach(observer2)
subject.set_state("New State") # 通知所有观察者