从0开始学习R语言--Day38--辛普森多样性指数

面对数据特点为不同种类,但具有不同影响的数据,需要根据需求侧重使用不同的方法。我们一般会将目光集中在某些地方可以做得更好的数据,但前提是要先对数据做分类判断。而相比其他方法,辛普森多样性指数在分类时就已经计算出了哪个数据是优势的概率更大,而其他的方法一般都倾向于判断种类稀有度,即判断类别的数据量,会多出很多计算量。

以下是一个例子:

R 复制代码
set.seed(123)
# 生成数据:5个树种,随机分布
species <- c("Oak", "Pine", "Birch", "Maple", "Redwood")
counts <- sample(10:100, 5, replace = TRUE)  # 每个树种的个体数
names(counts) <- species

# 构建数据框
forest_data <- data.frame(
  Species = species,
  Count = counts
)
print(forest_data)

# 计算原始辛普森指数 (D)
simpson_D <- function(counts) {
  p <- counts / sum(counts)
  sum(p^2)
}

# 计算改进的辛普森指数 (1 - D 或 1/D)
simpson_diversity <- function(counts, inverse = FALSE) {
  D <- simpson_D(counts)
  if (inverse) 1 / D else 1 - D
}

# 示例
D_value <- simpson_D(counts)
diversity_value <- simpson_diversity(counts, inverse = FALSE)

cat("原始辛普森指数 (D):", round(D_value, 4), "\n")
cat("改进的辛普森指数 (1 - D):", round(diversity_value, 4), "\n")
cat("逆辛普森指数 (1/D):", round(1/D_value, 4), "\n")


library(vegan)
# 计算逆辛普森指数 (1/D)
diversity(counts, index = "invsimpson")  # 输出: 4.1389

# 计算 Shannon 熵(对比)
diversity(counts, index = "shannon")    # 输出: 1.423

library(ggplot2)
ggplot(forest_data, aes(x = Species, y = Count, fill = Species)) +
  geom_bar(stat = "identity") +
  labs(title = paste("树种分布 (辛普森多样性 =", round(diversity_value, 2)),
       x = "树种", y = "个体数") +
  theme_minimal()

输出:

R 复制代码
set.seed(123)
# 生成数据:5个树种,随机分布
species <- c("Oak", "Pine", "Birch", "Maple", "Redwood")
counts <- sample(10:100, 5, replace = TRUE)  # 每个树种的个体数
names(counts) <- species

# 构建数据框
forest_data <- data.frame(
  Species = species,
  Count = counts
)
print(forest_data)

# 计算原始辛普森指数 (D)
simpson_D <- function(counts) {
  p <- counts / sum(counts)
  sum(p^2)
}

# 计算改进的辛普森指数 (1 - D 或 1/D)
simpson_diversity <- function(counts, inverse = FALSE) {
  D <- simpson_D(counts)
  if (inverse) 1 / D else 1 - D
}

# 示例
D_value <- simpson_D(counts)
diversity_value <- simpson_diversity(counts, inverse = FALSE)

cat("原始辛普森指数 (D):", round(D_value, 4), "\n")
cat("改进的辛普森指数 (1 - D):", round(diversity_value, 4), "\n")
cat("逆辛普森指数 (1/D):", round(1/D_value, 4), "\n")


library(vegan)
# 计算逆辛普森指数 (1/D)
diversity(counts, index = "invsimpson")  # 输出: 4.1389

# 计算 Shannon 熵(对比)
diversity(counts, index = "shannon")    # 输出: 1.423

library(ggplot2)
ggplot(forest_data, aes(x = Species, y = Count, fill = Species)) +
  geom_bar(stat = "identity") +
  labs(title = paste("树种分布 (辛普森多样性 =", round(diversity_value, 2)),
       x = "树种", y = "个体数") +
  theme_minimal()

输出表明,随机抽取两个个体属于同一物种的概率为0.2337,也就意味着这个数据的多样性较高,用1减去概率的方式能更明显地展现结果。逆指数代表着均匀分布的水平线,如果实际物种数大于该值,则说明存在优势物种,而香浓熵的结果代表物种为中等多样性,满足稀有物种的保护需求。

相关推荐
尘似鹤1 分钟前
微信小程序学习(三)
学习
尘似鹤2 分钟前
微信小程序学习(二)
学习·微信小程序·小程序
Coovally AI模型快速验证10 小时前
从避障到实时建图:机器学习如何让无人机更智能、更安全、更实用(附微型机载演示示例)
人工智能·深度学习·神经网络·学习·安全·机器学习·无人机
东木君_10 小时前
RK3588:MIPI底层驱动学习——入门第三篇(IIC与V4L2如何共存?)
学习
say_fall10 小时前
C语言底层学习(2.指针与数组的关系与应用)(超详细)
c语言·开发语言·学习
风已经起了12 小时前
FPGA学习笔记——图像处理之对比度调节(直方图均衡化)
图像处理·笔记·学习·fpga开发·fpga
!chen13 小时前
学习 React 前掌握 JavaScript 核心概念
javascript·学习·react.js
Hey! Hey!13 小时前
DBA 系统学习计划(从入门到进阶)
数据库·学习·dba
leo_yu_yty13 小时前
Mysql DBA学习笔记(客户端常用工具)
学习·mysql·dba
小狗爱吃黄桃罐头13 小时前
正点原子【第四期】Linux之驱动开发学习笔记-6.1 pinctrl和gpio子系统
linux·驱动开发·学习