从0开始学习R语言--Day38--辛普森多样性指数

面对数据特点为不同种类,但具有不同影响的数据,需要根据需求侧重使用不同的方法。我们一般会将目光集中在某些地方可以做得更好的数据,但前提是要先对数据做分类判断。而相比其他方法,辛普森多样性指数在分类时就已经计算出了哪个数据是优势的概率更大,而其他的方法一般都倾向于判断种类稀有度,即判断类别的数据量,会多出很多计算量。

以下是一个例子:

R 复制代码
set.seed(123)
# 生成数据:5个树种,随机分布
species <- c("Oak", "Pine", "Birch", "Maple", "Redwood")
counts <- sample(10:100, 5, replace = TRUE)  # 每个树种的个体数
names(counts) <- species

# 构建数据框
forest_data <- data.frame(
  Species = species,
  Count = counts
)
print(forest_data)

# 计算原始辛普森指数 (D)
simpson_D <- function(counts) {
  p <- counts / sum(counts)
  sum(p^2)
}

# 计算改进的辛普森指数 (1 - D 或 1/D)
simpson_diversity <- function(counts, inverse = FALSE) {
  D <- simpson_D(counts)
  if (inverse) 1 / D else 1 - D
}

# 示例
D_value <- simpson_D(counts)
diversity_value <- simpson_diversity(counts, inverse = FALSE)

cat("原始辛普森指数 (D):", round(D_value, 4), "\n")
cat("改进的辛普森指数 (1 - D):", round(diversity_value, 4), "\n")
cat("逆辛普森指数 (1/D):", round(1/D_value, 4), "\n")


library(vegan)
# 计算逆辛普森指数 (1/D)
diversity(counts, index = "invsimpson")  # 输出: 4.1389

# 计算 Shannon 熵(对比)
diversity(counts, index = "shannon")    # 输出: 1.423

library(ggplot2)
ggplot(forest_data, aes(x = Species, y = Count, fill = Species)) +
  geom_bar(stat = "identity") +
  labs(title = paste("树种分布 (辛普森多样性 =", round(diversity_value, 2)),
       x = "树种", y = "个体数") +
  theme_minimal()

输出:

R 复制代码
set.seed(123)
# 生成数据:5个树种,随机分布
species <- c("Oak", "Pine", "Birch", "Maple", "Redwood")
counts <- sample(10:100, 5, replace = TRUE)  # 每个树种的个体数
names(counts) <- species

# 构建数据框
forest_data <- data.frame(
  Species = species,
  Count = counts
)
print(forest_data)

# 计算原始辛普森指数 (D)
simpson_D <- function(counts) {
  p <- counts / sum(counts)
  sum(p^2)
}

# 计算改进的辛普森指数 (1 - D 或 1/D)
simpson_diversity <- function(counts, inverse = FALSE) {
  D <- simpson_D(counts)
  if (inverse) 1 / D else 1 - D
}

# 示例
D_value <- simpson_D(counts)
diversity_value <- simpson_diversity(counts, inverse = FALSE)

cat("原始辛普森指数 (D):", round(D_value, 4), "\n")
cat("改进的辛普森指数 (1 - D):", round(diversity_value, 4), "\n")
cat("逆辛普森指数 (1/D):", round(1/D_value, 4), "\n")


library(vegan)
# 计算逆辛普森指数 (1/D)
diversity(counts, index = "invsimpson")  # 输出: 4.1389

# 计算 Shannon 熵(对比)
diversity(counts, index = "shannon")    # 输出: 1.423

library(ggplot2)
ggplot(forest_data, aes(x = Species, y = Count, fill = Species)) +
  geom_bar(stat = "identity") +
  labs(title = paste("树种分布 (辛普森多样性 =", round(diversity_value, 2)),
       x = "树种", y = "个体数") +
  theme_minimal()

输出表明,随机抽取两个个体属于同一物种的概率为0.2337,也就意味着这个数据的多样性较高,用1减去概率的方式能更明显地展现结果。逆指数代表着均匀分布的水平线,如果实际物种数大于该值,则说明存在优势物种,而香浓熵的结果代表物种为中等多样性,满足稀有物种的保护需求。

相关推荐
我是小哪吒2.02 小时前
书籍推荐-《对抗机器学习:攻击面、防御机制与人工智能中的学习理论》
人工智能·深度学习·学习·机器学习·ai·语言模型·大模型
✎ ﹏梦醒͜ღ҉繁华落℘2 小时前
WPF学习(四)
学习·wpf
✎ ﹏梦醒͜ღ҉繁华落℘3 小时前
WPF学习(动画)
学习·wpf
循环过三天3 小时前
3-1 PID算法改进(积分部分)
笔记·stm32·单片机·学习·算法·pid
生如夏花℡4 小时前
HarmonyOS学习记录3
学习·ubuntu·harmonyos
之歆4 小时前
Python-封装和解构-set及操作-字典及操作-解析式生成器-内建函数迭代器-学习笔记
笔记·python·学习
幽络源小助理4 小时前
SpringBoot基于JavaWeb的城乡居民基本医疗信息管理系统
java·spring boot·学习
虾球xz5 小时前
CppCon 2018 学习:EFFECTIVE REPLACEMENT OF DYNAMIC POLYMORPHISM WITH std::variant
开发语言·c++·学习
Allen_LVyingbo5 小时前
Python常用医疗AI库以及案例解析(2025年版、上)
开发语言·人工智能·python·学习·健康医疗