从0开始学习R语言--Day38--辛普森多样性指数

面对数据特点为不同种类,但具有不同影响的数据,需要根据需求侧重使用不同的方法。我们一般会将目光集中在某些地方可以做得更好的数据,但前提是要先对数据做分类判断。而相比其他方法,辛普森多样性指数在分类时就已经计算出了哪个数据是优势的概率更大,而其他的方法一般都倾向于判断种类稀有度,即判断类别的数据量,会多出很多计算量。

以下是一个例子:

R 复制代码
set.seed(123)
# 生成数据:5个树种,随机分布
species <- c("Oak", "Pine", "Birch", "Maple", "Redwood")
counts <- sample(10:100, 5, replace = TRUE)  # 每个树种的个体数
names(counts) <- species

# 构建数据框
forest_data <- data.frame(
  Species = species,
  Count = counts
)
print(forest_data)

# 计算原始辛普森指数 (D)
simpson_D <- function(counts) {
  p <- counts / sum(counts)
  sum(p^2)
}

# 计算改进的辛普森指数 (1 - D 或 1/D)
simpson_diversity <- function(counts, inverse = FALSE) {
  D <- simpson_D(counts)
  if (inverse) 1 / D else 1 - D
}

# 示例
D_value <- simpson_D(counts)
diversity_value <- simpson_diversity(counts, inverse = FALSE)

cat("原始辛普森指数 (D):", round(D_value, 4), "\n")
cat("改进的辛普森指数 (1 - D):", round(diversity_value, 4), "\n")
cat("逆辛普森指数 (1/D):", round(1/D_value, 4), "\n")


library(vegan)
# 计算逆辛普森指数 (1/D)
diversity(counts, index = "invsimpson")  # 输出: 4.1389

# 计算 Shannon 熵(对比)
diversity(counts, index = "shannon")    # 输出: 1.423

library(ggplot2)
ggplot(forest_data, aes(x = Species, y = Count, fill = Species)) +
  geom_bar(stat = "identity") +
  labs(title = paste("树种分布 (辛普森多样性 =", round(diversity_value, 2)),
       x = "树种", y = "个体数") +
  theme_minimal()

输出:

R 复制代码
set.seed(123)
# 生成数据:5个树种,随机分布
species <- c("Oak", "Pine", "Birch", "Maple", "Redwood")
counts <- sample(10:100, 5, replace = TRUE)  # 每个树种的个体数
names(counts) <- species

# 构建数据框
forest_data <- data.frame(
  Species = species,
  Count = counts
)
print(forest_data)

# 计算原始辛普森指数 (D)
simpson_D <- function(counts) {
  p <- counts / sum(counts)
  sum(p^2)
}

# 计算改进的辛普森指数 (1 - D 或 1/D)
simpson_diversity <- function(counts, inverse = FALSE) {
  D <- simpson_D(counts)
  if (inverse) 1 / D else 1 - D
}

# 示例
D_value <- simpson_D(counts)
diversity_value <- simpson_diversity(counts, inverse = FALSE)

cat("原始辛普森指数 (D):", round(D_value, 4), "\n")
cat("改进的辛普森指数 (1 - D):", round(diversity_value, 4), "\n")
cat("逆辛普森指数 (1/D):", round(1/D_value, 4), "\n")


library(vegan)
# 计算逆辛普森指数 (1/D)
diversity(counts, index = "invsimpson")  # 输出: 4.1389

# 计算 Shannon 熵(对比)
diversity(counts, index = "shannon")    # 输出: 1.423

library(ggplot2)
ggplot(forest_data, aes(x = Species, y = Count, fill = Species)) +
  geom_bar(stat = "identity") +
  labs(title = paste("树种分布 (辛普森多样性 =", round(diversity_value, 2)),
       x = "树种", y = "个体数") +
  theme_minimal()

输出表明,随机抽取两个个体属于同一物种的概率为0.2337,也就意味着这个数据的多样性较高,用1减去概率的方式能更明显地展现结果。逆指数代表着均匀分布的水平线,如果实际物种数大于该值,则说明存在优势物种,而香浓熵的结果代表物种为中等多样性,满足稀有物种的保护需求。

相关推荐
悠哉悠哉愿意1 小时前
【电赛学习笔记】MaxiCAM 项目实践——与单片机的串口通信
笔记·python·单片机·嵌入式硬件·学习·视觉检测
快乐肚皮1 小时前
ZooKeeper学习专栏(五):Java客户端开发(原生API)详解
学习·zookeeper·java-zookeeper
慕y2741 小时前
Java学习第七十二部分——Zookeeper
java·学习·java-zookeeper
★YUI★2 小时前
学习游戏制作记录(剑投掷技能)7.26
学习·游戏·unity·c#
蓝桉8022 小时前
opencv学习(图像金字塔)
人工智能·opencv·学习
rannn_1113 小时前
Java学习|黑马笔记|Day23】网络编程、反射、动态代理
java·笔记·后端·学习
go54631584653 小时前
中文语音识别与偏误检测系统开发
开发语言·人工智能·学习·生成对抗网络·数学建模·语音识别
好奇龙猫4 小时前
日语学习-日语知识点小记-构建基础-JLPT-N3阶段(9):ようなN
学习
牵牛老人4 小时前
OpenCV学习探秘之二 :数字图像的矩阵原理,OpenCV图像类与常用函数接口说明,及其常见操作核心技术详解
opencv·学习·矩阵
flashier5 小时前
ESP32学习笔记_Components(1)——使用LED Strip组件点亮LED灯带
学习·esp32·led·led灯带·esp32组件