简单入门Python装饰器

引言

在Python中,装饰器(Decorator)是一种强大的工具,它使用简单的@符号语法,却能实现令人惊叹的代码增强功能。

装饰器初体验

1.1 最简单的装饰器示例

python 复制代码
def simple_decorator(func):
    def wrapper():
        print("函数执行前...")
        func()
        print("函数执行后...")
    return wrapper

@simple_decorator
def say_hello():
    print("Hello!")

say_hello()
"""
输出:
函数执行前...
Hello!
函数执行后...
"""

1.2 装饰器的本质

装饰器本质上是一个高阶函数,它:

  1. 接受一个函数作为参数
  2. 返回一个新函数
  3. 通常在不修改原函数代码的情况下增强其功能

@decorator 只是语法糖,等价于:

python 复制代码
def say_hello(): ...
say_hello = decorator(say_hello)

为什么需要装饰器?

2.1 代码复用:DRY原则

避免重复代码(Don't Repeat Yourself):

python 复制代码
import time

# 没有装饰器的重复代码
def funco1():
    start = time.time()
    # 函数逻辑...
    time.sleep(2)
    end = time.time()
    print(f"函数 {funco1.__name__} 耗时: {end-start}秒")

def funco2():
    start = time.time()
    # 函数逻辑...
    time.sleep(3)
    end = time.time()
    print(f"函数 {funco2.__name__} 耗时: {end-start}秒")

def timing(func):
    def wrapper(*args, **kwargs):
        start = time.time()
        result = func(*args, **kwargs)
        end = time.time()
        print(f"函数 {func.__name__} 耗时: {end-start}秒")
        return result
    return wrapper

@timing
def func1():
    # 函数逻辑...
    time.sleep(2)
    print('func1 ....')

@timing
def func2():
    time.sleep(3)
    # 函数逻辑...
    print('func2 ....')

if __name__ == '__main__':
    funco1()
    funco2()
    func1()
    func2()

2.2 分离关注点

将业务逻辑与横切关注点(如日志、权限检查)分离:

python 复制代码
@login_required
@log_execution
def delete_user(user_id):
    # 纯业务逻辑
    ...

装饰器进阶用法

3.1 带参数的装饰器

python 复制代码
def repeat(num_times):
    def decorator(func):
        def wrapper(*args, **kwargs):
            for _ in range(num_times):
                result = func(*args, **kwargs)
            return result
        return wrapper
    return decorator

@repeat(num_times=3)
def greet(name):
    print(f"Hello {name}")

greet("Alice")
"""
Hello Alice
Hello Alice
Hello Alice
"""

3.2 保留原函数元信息

使用functools.wraps保持原函数的__name__等属性:

python 复制代码
from functools import wraps

def logged(func):
    @wraps(func)
    def wrapper(*args, **kwargs):
        print(f"调用 {func.__name__}")
        return func(*args, **kwargs)
    return wrapper

3.3 类装饰器

python 复制代码
class CountCalls:
    def __init__(self, func):
        self.func = func
        self.num_calls = 0
    
    def __call__(self, *args, **kwargs):
        self.num_calls += 1
        print(f"调用次数: {self.num_calls}")
        return self.func(*args, **kwargs)

@CountCalls
def say_hello():
    print("Hello!")

say_hello()  # 输出调用次数和Hello!
say_hello()  # 输出调用次数和Hello!

"""
调用次数: 1
Hello!
调用次数: 2
Hello!
"""

结语

点个赞,关注我获取更多实用 Python 技术干货!如果觉得有用,记得收藏本文!

相关推荐
waynaqua1 分钟前
FastAPI开发AI应用一:实现连续多轮对话
python·openai
qiyue771 分钟前
AI编程专栏(三)- 实战无手写代码,Monorepo结构框架开发
前端·ai编程
纨妙4 分钟前
python打卡day59
开发语言·python
waynaqua5 分钟前
FastAPI开发AI应用二:多厂商模型使用指南
python·openai
断竿散人6 分钟前
JavaScript 异常捕获完全指南(下):前端框架与生产监控实战
前端·javascript·前端框架
Danny_FD7 分钟前
Vue2 + Vuex 实现页面跳转时的状态监听与处理
前端
小飞悟8 分钟前
别再只会用 px 了!移动端适配必须掌握的 CSS 单位
前端·css·设计
秋难降8 分钟前
Python 知识 “八股”:给有 C 和 Java 基础的你😁😁😁
java·python·c
安思派Anspire9 分钟前
LangGraph + MCP + Ollama:构建强大代理 AI 的关键(一)
前端·深度学习·架构
LRH9 分钟前
JS基础 - 基于 Generator + Promise 实现 async/await 原理
前端·javascript