目标检测之数据增强

数据翻转,需要把bbox相应的坐标值也进行交换

代码:

python 复制代码
import random
from torchvision.transforms import functional as F


class Compose(object):
    """组合多个transform函数"""
    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, image, target):
        for t in self.transforms:
            image, target = t(image, target)
        return image, target


class ToTensor(object):
    """将PIL图像转为Tensor"""
    def __call__(self, image, target):
        image = F.to_tensor(image)
        return image, target


class RandomHorizontalFlip(object):
    """随机水平翻转图像以及bboxes"""
    def __init__(self, prob=0.5):
        self.prob = prob

    def __call__(self, image, target):
        if random.random() < self.prob:
            height, width = image.shape[-2:]
            image = image.flip(-1)  # 水平翻转图片
            bbox = target["boxes"]
            # bbox: xmin, ymin, xmax, ymax
            bbox[:, [0, 2]] = width - bbox[:, [2, 0]]  # 翻转对应bbox坐标信息
            target["boxes"] = bbox
        return image, target

对图像及其对应的标注文件(XML格式)进行数据增强,并将增强后的图像和标注文件保存到指定的目录中

  • root:XML文件所在的目录路径。

  • image_id:XML文件的名称(不包含扩展名)。

代码:

python 复制代码
import xml.etree.ElementTree as ET
import pickle
import os
from os import getcwd
import numpy as np
from PIL import Image
import shutil
import matplotlib.pyplot as plt

import imgaug as ia
from imgaug import augmenters as iaa


ia.seed(1)


def read_xml_annotation(root, image_id):
    in_file = open(os.path.join(root, image_id))
    tree = ET.parse(in_file)
    root = tree.getroot()
    bndboxlist = []

    for object in root.findall('object'):  # 找到root节点下的所有country节点
        bndbox = object.find('bndbox')  # 子节点下节点rank的值

        xmin = int(bndbox.find('xmin').text)
        xmax = int(bndbox.find('xmax').text)
        ymin = int(bndbox.find('ymin').text)
        ymax = int(bndbox.find('ymax').text)
        # print(xmin,ymin,xmax,ymax)
        bndboxlist.append([xmin, ymin, xmax, ymax])
        # print(bndboxlist)

    bndbox = root.find('object').find('bndbox')
    return bndboxlist


# (506.0000, 330.0000, 528.0000, 348.0000) -> (520.4747, 381.5080, 540.5596, 398.6603)
def change_xml_annotation(root, image_id, new_target):
    new_xmin = new_target[0]
    new_ymin = new_target[1]
    new_xmax = new_target[2]
    new_ymax = new_target[3]

    in_file = open(os.path.join(root, str(image_id) + '.xml'))  # 这里root分别由两个意思
    tree = ET.parse(in_file)
    xmlroot = tree.getroot()
    object = xmlroot.find('object')
    bndbox = object.find('bndbox')
    xmin = bndbox.find('xmin')
    xmin.text = str(new_xmin)
    ymin = bndbox.find('ymin')
    ymin.text = str(new_ymin)
    xmax = bndbox.find('xmax')
    xmax.text = str(new_xmax)
    ymax = bndbox.find('ymax')
    ymax.text = str(new_ymax)
    tree.write(os.path.join(root, str("%06d" % (str(id) + '.xml'))))


def change_xml_list_annotation(root, image_id, new_target, saveroot, id):
    in_file = open(os.path.join(root, str(image_id) + '.xml'))  # 这里root分别由两个意思
    tree = ET.parse(in_file)
    elem = tree.find('filename')
    elem.text = (id + '.jpg')
    xmlroot = tree.getroot()
    index = 0

    for object in xmlroot.findall('object'):  # 找到root节点下的所有country节点
        bndbox = object.find('bndbox')  # 子节点下节点rank的值

        # xmin = int(bndbox.find('xmin').text)
        # xmax = int(bndbox.find('xmax').text)
        # ymin = int(bndbox.find('ymin').text)
        # ymax = int(bndbox.find('ymax').text)

        new_xmin = new_target[index][0]
        new_ymin = new_target[index][1]
        new_xmax = new_target[index][2]
        new_ymax = new_target[index][3]

        xmin = bndbox.find('xmin')
        xmin.text = str(new_xmin)
        ymin = bndbox.find('ymin')
        ymin.text = str(new_ymin)
        xmax = bndbox.find('xmax')
        xmax.text = str(new_xmax)
        ymax = bndbox.find('ymax')
        ymax.text = str(new_ymax)

        index = index + 1

    tree.write(os.path.join(saveroot, id + '.xml'))


def mkdir(path):
    # 去除首位空格
    path = path.strip()
    # 去除尾部 \ 符号
    path = path.rstrip("\\")
    # 判断路径是否存在
    # 存在     True
    # 不存在   False
    isExists = os.path.exists(path)
    # 判断结果
    if not isExists:
        # 如果不存在则创建目录
        # 创建目录操作函数
        os.makedirs(path)
        print(path + ' 创建成功')
        return True
    else:
        # 如果目录存在则不创建,并提示目录已存在
        print(path + ' 目录已存在')
        return False


if __name__ == "__main__":

    IMG_DIR = "VOCdevkit/VOC2007/JPEGImages3"
    XML_DIR = "VOCdevkit/VOC2007/Annotations3"

    AUG_XML_DIR = "VOCdevkit/VOC2007/Annotations"  # 存储增强后的XML文件夹路径
    try:
        shutil.rmtree(AUG_XML_DIR)
    except FileNotFoundError as e:
        a = 1
    mkdir(AUG_XML_DIR)
    
    AUG_IMG_DIR = "VOCdevkit/VOC2007/JPEGImages"  # 存储增强后的影像文件夹路径
    try:
        shutil.rmtree(AUG_IMG_DIR)
    except FileNotFoundError as e:
        a = 1
    mkdir(AUG_IMG_DIR)

    AUGLOOP = 8  # 每张影像增强的数量

    boxes_img_aug_list = []
    new_bndbox = []
    new_bndbox_list = []

    # 影像增强
    seq = iaa.Sequential([
        iaa.Flipud(0.5),  # vertically flip 20% of all images
        iaa.Fliplr(0.5),  # 镜像
        iaa.Multiply((1.2, 1.5)),  # change brightness, doesn't affect BBs
        iaa.GaussianBlur(sigma=(0, 3.0)),  # iaa.GaussianBlur(0.5),
        iaa.Affine(
            translate_px={"x": 15, "y": 15},
            scale=(0.8, 0.95),
            rotate=(-30, 30)
        )  # translate by 40/60px on x/y axis, and scale to 50-70%, affects BBs
    ])

    for root, sub_folders, files in os.walk(XML_DIR):

        for name in files:

            bndbox = read_xml_annotation(XML_DIR, name)
            shutil.copy(os.path.join(XML_DIR, name), AUG_XML_DIR)
            shutil.copy(os.path.join(IMG_DIR, name[:-4] + '.jpg'), AUG_IMG_DIR)

            for epoch in range(AUGLOOP):
                seq_det = seq.to_deterministic()  # 保持坐标和图像同步改变,而不是随机
                # 读取图片
                img = Image.open(os.path.join(IMG_DIR, name[:-4] + '.jpg'))
                # sp = img.size
                img = np.asarray(img)
                # bndbox 坐标增强
                for i in range(len(bndbox)):
                    bbs = ia.BoundingBoxesOnImage([
                        ia.BoundingBox(x1=bndbox[i][0], y1=bndbox[i][1], x2=bndbox[i][2], y2=bndbox[i][3]),
                    ], shape=img.shape)

                    bbs_aug = seq_det.augment_bounding_boxes([bbs])[0]
                    boxes_img_aug_list.append(bbs_aug)

                    # new_bndbox_list:[[x1,y1,x2,y2],...[],[]]
                    n_x1 = int(max(1, min(img.shape[1], bbs_aug.bounding_boxes[0].x1)))
                    n_y1 = int(max(1, min(img.shape[0], bbs_aug.bounding_boxes[0].y1)))
                    n_x2 = int(max(1, min(img.shape[1], bbs_aug.bounding_boxes[0].x2)))
                    n_y2 = int(max(1, min(img.shape[0], bbs_aug.bounding_boxes[0].y2)))
                    if n_x1 == 1 and n_x1 == n_x2:
                        n_x2 += 1
                    if n_y1 == 1 and n_y2 == n_y1:
                        n_y2 += 1
                    if n_x1 >= n_x2 or n_y1 >= n_y2:
                        print('error', name)
                    new_bndbox_list.append([n_x1, n_y1, n_x2, n_y2])
                # 存储变化后的图片
                image_aug = seq_det.augment_images([img])[0]
                path = os.path.join(AUG_IMG_DIR,
                                    str("%06d" % (len(files)*epoch))+ name[:-4] + '.jpg')
                image_auged = bbs.draw_on_image(image_aug, thickness=0)
                Image.fromarray(image_auged).save(path)

                # 存储变化后的XML
                change_xml_list_annotation(XML_DIR, name[:-4], new_bndbox_list, AUG_XML_DIR,
                                           str("%06d" % (len(files)*epoch))+ name[:-4])
                print(str("%06d" % (len(files)*epoch))+ name[:-4] + '.jpg')
                new_bndbox_list = []

代码结构解读:

1. 导入模块
python 复制代码
import xml.etree.ElementTree as ET
import pickle
import os
from os import getcwd
import numpy as np
from PIL import Image
import shutil
import matplotlib.pyplot as plt

import imgaug as ia
from imgaug import augmenters as iaa
  • xml.etree.ElementTree:用于解析和操作XML文件。

  • numpyPIL:用于图像处理。

  • imgaug:用于图像增强。

  • 其他模块用于文件操作和路径管理。

2. 数据增强的随机种子
  • 设置随机种子,确保每次运行代码时增强操作的一致性。
python 复制代码
ia.seed(1)
3. 读取XML标注文件
python 复制代码
def read_xml_annotation(root, image_id):
    in_file = open(os.path.join(root, image_id))
    tree = ET.parse(in_file)
    root = tree.getroot()
    bndboxlist = []

    for object in root.findall('object'):
        bndbox = object.find('bndbox')
        xmin = int(bndbox.find('xmin').text)
        xmax = int(bndbox.find('xmax').text)
        ymin = int(bndbox.find('ymin').text)
        ymax = int(bndbox.find('ymax').text)
        bndboxlist.append([xmin, ymin, xmax, ymax])

    return bndboxlist
  • 输入:XML文件所在的目录和文件名。

  • 功能:解析XML文件,提取所有目标对象的边界框坐标。

  • 输出:边界框列表,每个边界框用 [xmin, ymin, xmax, ymax] 表示。

4. 更新单个XML标注文件
python 复制代码
def change_xml_annotation(root, image_id, new_target):
    new_xmin, new_ymin, new_xmax, new_ymax = new_target
    in_file = open(os.path.join(root, str(image_id) + '.xml'))
    tree = ET.parse(in_file)
    xmlroot = tree.getroot()
    object = xmlroot.find('object')
    bndbox = object.find('bndbox')
    xmin = bndbox.find('xmin')
    xmin.text = str(new_xmin)
    ymin = bndbox.find('ymin')
    ymin.text = str(new_ymin)
    xmax = bndbox.find('xmax')
    xmax.text = str(new_xmax)
    ymax = bndbox.find('ymax')
    ymax.text = str(new_ymax)
    tree.write(os.path.join(root, str("%06d" % (str(id) + '.xml'))))
  • 输入:XML文件所在的目录、文件名和新的边界框坐标。

  • 功能:更新XML文件中第一个目标对象的边界框坐标。

  • 输出:保存更新后的XML文件。

5. 更新多个XML标注文件
python 复制代码
def change_xml_list_annotation(root, image_id, new_target, saveroot, id):
    in_file = open(os.path.join(root, str(image_id) + '.xml'))
    tree = ET.parse(in_file)
    elem = tree.find('filename')
    elem.text = (id + '.jpg')
    xmlroot = tree.getroot()
    index = 0

    for object in xmlroot.findall('object'):
        bndbox = object.find('bndbox')
        new_xmin = new_target[index][0]
        new_ymin = new_target[index][1]
        new_xmax = new_target[index][2]
        new_ymax = new_target[index][3]

        xmin = bndbox.find('xmin')
        xmin.text = str(new_xmin)
        ymin = bndbox.find('ymin')
        ymin.text = str(new_ymin)
        xmax = bndbox.find('xmax')
        xmax.text = str(new_xmax)
        ymax = bndbox.find('ymax')
        ymax.text = str(new_ymax)

        index += 1

    tree.write(os.path.join(saveroot, id + '.xml'))
  • 输入:原始XML目录、文件名、新的边界框列表、保存目录和新的文件名。

  • 功能:更新XML文件中所有目标对象的边界框坐标。

  • 输出:保存更新后的XML文件。

6. 创建目录
python 复制代码
def mkdir(path):
    path = path.strip()
    path = path.rstrip("\\")
    isExists = os.path.exists(path)
    if not isExists:
        os.makedirs(path)
        print(path + ' 创建成功')
        return True
    else:
        print(path + ' 目录已存在')
        return False
  • 输入:目标目录路径。

  • 功能:创建目录,如果目录已存在,则提示。

7. 主程序
python 复制代码
if __name__ == "__main__":
    IMG_DIR = "VOCdevkit/VOC2007/JPEGImages3"
    XML_DIR = "VOCdevkit/VOC2007/Annotations3"

    AUG_XML_DIR = "VOCdevkit/VOC2007/Annotations"
    try:
        shutil.rmtree(AUG_XML_DIR)
    except FileNotFoundError as e:
        pass
    mkdir(AUG_XML_DIR)

    AUG_IMG_DIR = "VOCdevkit/VOC2007/JPEGImages"
    try:
        shutil.rmtree(AUG_IMG_DIR)
    except FileNotFoundError as e:
        pass
    mkdir(AUG_IMG_DIR)

    AUGLOOP = 8  # 每张影像增强的数量

    seq = iaa.Sequential([
        iaa.Flipud(0.5),  # 垂直翻转
        iaa.Fliplr(0.5),  # 水平翻转
        iaa.Multiply((1.2, 1.5)),  # 调整亮度
        iaa.GaussianBlur(sigma=(0, 3.0)),  # 高斯模糊
        iaa.Affine(
            translate_px={"x": 15, "y": 15},
            scale=(0.8, 0.95),
            rotate=(-30, 30)
        )  # 平移、缩放、旋转
    ])

    for root, sub_folders, files in os.walk(XML_DIR):
        for name in files:
            bndbox = read_xml_annotation(XML_DIR, name)
            shutil.copy(os.path.join(XML_DIR, name), AUG_XML_DIR)
            shutil.copy(os.path.join(IMG_DIR, name[:-4] + '.jpg'), AUG_IMG_DIR)

            for epoch in range(AUGLOOP):
                seq_det = seq.to_deterministic()
                img = Image.open(os.path.join(IMG_DIR, name[:-4] + '.jpg'))
                img = np.asarray(img)

                for i in range(len(bndbox)):
                    bbs = ia.BoundingBoxesOnImage([
                        ia.BoundingBox(x1=bndbox[i][0], y1=bndbox[i][1], x2=bndbox[i][2], y2=bndbox[i][3]),
                    ], shape=img.shape)
                    bbs_aug = seq_det.augment_bounding_boxes([bbs])[0]
                    n_x1 = int(max(1, min(img.shape[1], bbs_aug.bounding_boxes[0].x1)))
                    n_y1 = int(max(1, min(img.shape[0], bbs_aug.bounding_boxes[0].y1)))
                    n_x2 = int(max(1, min(img.shape[1], bbs_aug.bounding_boxes[0].x2)))
                    n_y2 = int(max(1, min(img.shape[0], bbs_aug.bounding_boxes[0].y2)))
                    if n_x1 == 1 and n_x1 == n_x2:
                        n_x2 += 1
                    if n_y1 == 1 and n_y2 == n_y1:
                        n_y2 += 1
                    if n_x1 >= n_x2 or n_y1 >= n_y2:
                        print('error', name)
                    new_bndbox_list.append([n_x1, n_y1, n_x2, n_y2])

                image_aug = seq_det.augment_images([img])[0]
                path = os.path.join(AUG_IMG_DIR, str("%06d" % (len(files) * epoch)) + name
相关推荐
打马诗人3 小时前
【YOLO11】【DeepSort】【NCNN】使用YOLOv11和DeepSort进行行人目标跟踪。(基于ncnn框架,c++实现)
人工智能·算法·目标检测
tangjunjun-owen10 小时前
单类别目标检测中的 Varifocal Loss 与 mAP 评估:从原理到实践(特别前景和背景类区分)
人工智能·目标检测·计算机视觉
Wendy144113 小时前
【目标检测基础】——yolo学习
学习·yolo·目标检测
2501_9247482413 小时前
高密度客流识别精度↑32%!陌讯多模态融合算法在智慧交通的实战解析
大数据·人工智能·算法·目标检测·计算机视觉
AI松子66616 小时前
Sparse4D系列算法:迈向长时序稀疏化3D目标检测的新实践
人工智能·算法·目标检测
xiaobaibai1531 天前
智慧交通中目标检测 mAP↑28%:陌讯多模态融合算法实战解析
人工智能·算法·目标检测·计算机视觉·目标跟踪·视觉检测
战争热诚1 天前
基于transformer的目标检测——匈牙利匹配算法
算法·目标检测·transformer
CV遥感视觉笔记1 天前
从0搭建YOLO目标检测系统:实战项目+完整流程+界面开发(附源码)
人工智能·yolo·目标检测
m0_558790142 天前
GPU算力平台评测
服务器·人工智能·python·深度学习·神经网络·目标检测·机器学习
2501_924731992 天前
驾驶场景玩手机识别:陌讯行为特征融合算法误检率↓76% 实战解析
开发语言·人工智能·算法·目标检测·智能手机