YOLO 模型作为目标检测的一座高峰不必多说,快又好用。一般来说是用叫做 ultralytics 的 Python 库使用和训练 YOLO 模型。库写得非常好,能很简便地用一个函数启用模型训练。
python
from ultralytics import YOLO
model = YOLO("yolo12l.pt")
results = model.train(
data="/mnt/sda/data/20250312_SARDet100K/sar100k.yaml",
epochs=100,
imgsz=640,
)
但如果有更高的自定义需求,这种一键训练的方式就不够用了。如果能把训练代码写成以下标准的 PyTorch 训练形式,那添加自定义修改就方便多了。
python
train_loader = DataLoader(train_dataset, batch_size=..., shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=...)
for epoch in range(...):
model.train()
for x, y in train_loader:
x, y = x.to(device), y.to(device)
pred = model(x)
loss = criterion(pred, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
model.eval()
with torch.no_grad():
for x, y in val_loader:
x, y = x.to(device), y.to(device)
pred = model(x)
val_loss = criterion(pred, y)
经过几周的鏖战,终于是把 ultralytics 手撕得差不多,摆脱了 model.train()
的束缚。现在能自由训练目标检测了。
总览
ultralytics 库的逻辑写得很紧凑,完全改写是相当困难的。比较现实的修改方法是借用和继承原库的一些库和方法,使用符合 ultralytics 的数据形式。
中途还遇到了个奇怪的问题。使用 torchvision 的数据增强方法会损坏 YOLO 预训练权重性能,必须用 ultralytics 的数据增强。即使是很小心地控制变量、只选择两者都有的数据增强方法,肉眼完全看不出图像和标注框差异,实验都只能得出一样的结果。那就这样吧。
Lightning 是一个辅助编写 PyTorch 训练代码的库,可以把像是训练循环封装成一个函数,不论是编写还是查阅都会轻松许多。即使没接触过 Lightning 也没关系,后文看函数名也能知道我写的啥逻辑。
本文尽可能简化代码逻辑,主要起示例作用。
数据准备
Dataset
需要构造出一个符合 ultralytics 吸怪的数据集。这个数据集需要是一个字典,包含这些键:
- img,图片矩阵。用
Image.open()
读出来后除以 255 就能符合要求了 - bboxes,标注框,以 xywh 形式存储的 List[List] 对象
- cls,类别,纯数字
- bbox_format,这个填
"xywh"
就行 - normalized,填
True
- ori_shape,原始图片大小
- ratio_pad,不清楚,填
None
就可以
具体实现看代码。
__init__()
,写有数据增强逻辑__len__()
,让数据集能被获取长度update_labels_info()
,从 ultralytics 摘抄过来用于辅助生成 label 数据的函数__getitem__()
进行实际的数据构造。重点看这个函数的代码
python
from torch.utils.data import Dataset
from ultralytics.data.augment import (
Compose,
Format,
LetterBox,
RandomPerspective,
RandomHSV,
RandomFlip,
)
from ultralytics.utils.ops import resample_segments
from ultralytics.utils.instance import Instances
class MyDataset(Dataset):
def __init__(self, dataset):
self.dataset = dataset
pre_transform = RandomPerspective(
degrees=0.0,
translate=0.0,
scale=0.5,
shear=0.0,
perspective=0.0,
pre_transform=LetterBox(new_shape=(512, 512), scaleup=False),
)
self.transforms = Compose(
[
pre_transform,
RandomHSV(hgain=0.015, sgain=0.7, vgain=0.4),
RandomFlip(direction="vertical", p=0.0),
RandomFlip(direction="horizontal", p=0.5),
]
)
self.transforms.append(
Format(
bbox_format="xywh",
normalize=True,
return_mask=False,
return_keypoint=False,
return_obb=False,
batch_idx=True,
mask_ratio=4,
mask_overlap=True,
bgr=0.0,
)
)
def __len__(self):
return len(self.dataset)
def update_labels_info(self, label: Dict) -> Dict:
"""
Update label format for different tasks.
Args:
label (dict): Label dictionary containing bboxes, segments, keypoints, etc.
Returns:
(dict): Updated label dictionary with instances.
Note:
cls is not with bboxes now, classification and semantic segmentation need an independent cls label
Can also support classification and semantic segmentation by adding or removing dict keys there.
"""
bboxes = label.pop("bboxes")
segments = label.pop("segments", [])
keypoints = label.pop("keypoints", None)
bbox_format = label.pop("bbox_format")
normalized = label.pop("normalized")
# NOTE: do NOT resample oriented boxes
segment_resamples = 1000
if len(segments) > 0:
# make sure segments interpolate correctly if original length is greater than segment_resamples
max_len = max(len(s) for s in segments)
segment_resamples = (max_len + 1) if segment_resamples < max_len else segment_resamples
# list[np.array(segment_resamples, 2)] * num_samples
segments = np.stack(resample_segments(segments, n=segment_resamples), axis=0)
else:
segments = np.zeros((0, segment_resamples, 2), dtype=np.float32)
bboxes = bboxes if bboxes.size else np.zeros((0, 4), dtype=np.float32)
label["instances"] = Instances(bboxes, segments, keypoints, bbox_format=bbox_format, normalized=normalized)
return label
def __getitem__(self, idx):
image_path, annotations = self.dataset[idx]
with Image.open(image_path) as img:
this_img = img.convert("RGB")
original_size = this_img.size
boxes = []
classes = []
for one_box in annotations:
bbox = one_box["bbox"]
category_id = one_box["category_id"]
x, y, w, h = bbox
boxes.append([x, y, w, h])
classes.append([category_id])
bboxes = np.array(boxes, dtype=np.float32)
cls = np.array(classes, dtype=np.float32)
label = {
'img': np.array(this_img),
'bboxes': bboxes,
'cls': cls,
'bbox_format': 'xywh',
'normalized': True,
'ori_shape': original_size,
'ratio_pad': None,
}
label = self.update_labels_info(label)
label = self.transforms(label)
label["img"] = label["img"] / 255.0
return label
DataLoader
从 ultralytics 摘抄 collate_fn()
,之后要传入到 DataLoader
代替默认 collator。
python
def collate_fn(batch: List[Dict]) -> Dict:
"""
Collate data samples into batches.
Args:
batch (List[dict]): List of dictionaries containing sample data.
Returns:
(dict): Collated batch with stacked tensors.
"""
new_batch = {}
batch = [dict(sorted(b.items())) for b in batch] # make sure the keys are in the same order
keys = batch[0].keys()
values = list(zip(*[list(b.values()) for b in batch]))
for i, k in enumerate(keys):
value = values[i]
if k in {"img", "text_feats"}:
value = torch.stack(value, 0)
elif k == "visuals":
value = torch.nn.utils.rnn.pad_sequence(value, batch_first=True)
if k in {"masks", "keypoints", "bboxes", "cls", "segments", "obb"}:
value = torch.cat(value, 0)
new_batch[k] = value
new_batch["batch_idx"] = list(new_batch["batch_idx"])
for i in range(len(new_batch["batch_idx"])):
new_batch["batch_idx"][i] += i # add target image index for build_targets()
new_batch["batch_idx"] = torch.cat(new_batch["batch_idx"], 0)
return new_batch
实例化 dataloader。
python
from torch.utils.data import DataLoader
train_dataset = MyDataset(train_dataset)
train_loader = DataLoader(
train_dataset,
batch_size=16,
shuffle=True,
collate_fn=collate_fn,
num_workers=4,
pin_memory=True,
)
模型定义
这一步会给原来的 YOLO 模型套层壳,方便后面使用。
__init__()
,用比较别扭的方式初始化模型并加载预训练权重forward()
,输入图像进行正向传播。注意,在 train 状态下,会输出loss_out
;在 eval 状态下,会输出(inference_out, loss_out)
get_loss()
,输入 batch 数据和loss_out
,输出 lossget_bboxes
,输入inference_out
,输出 bboxes。会用 non_max_suppression 处理 bbox
python
from types import SimpleNamespace
from ultralytics.nn.tasks import DetectionModel
from ultralytics.utils import ops
class YOLOModule(DetectionModel):
def __init__(self, num_class, channels, model="yolo11n.pt", pretrained=False):
model = YOLO(model)
cfg = model.yaml
args = model.args
args.update(
{
"box": 7.5,
"cls": 0.5,
"dfl": 1.5,
}
)
self.args = SimpleNamespace(**args)
self.overrides = args
super().__init__(cfg, nc=num_class, ch=channels, verbose=False)
if pretrained:
self.load(model.model)
def forward(self, x):
preds = self.predict(x)
return preds
def get_loss(self, batch, preds):
return self.loss(batch, preds)[0]
def get_bboxes(self, preds):
preds = ops.non_max_suppression(
preds,
conf_thres=0.25,
iou_thres=0.7,
max_det=300,
return_idxs=False,
)
return preds
训练代码 / Lightning Module 定义
以下代码主要看 training_step()
和 validation_step()
的逻辑,看是如何得到最终的 loss 的(Lightning 会帮忙调用 loss.backward()
等函数)。
python
class LightningModel(BaseModule):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, x):
return self.model(x)
def training_step(self, batch, batch_idx):
x = batch['img']
batch_size = x.shape[0]
loss_out = self(x)
loss = self.model.get_loss(
batch=batch,
preds=loss_out,
)
box_loss, cls_loss, dfl_loss = loss / batch_size
loss = box_loss + cls_loss + dfl_loss
self.log('train/loss', loss, on_step=True, on_epoch=True, batch_size=batch_size, sync_dist=True)
return loss
def validation_step(self, batch, batch_idx):
x = batch['img']
batch_size = x.shape[0]
inference_out, loss_out = self(x)
loss = self.model.get_loss(
batch=batch,
preds=loss_out,
)
box_loss, cls_loss, dfl_loss = loss / batch_size
loss = box_loss + cls_loss + dfl_loss
self.log('val/loss', loss, on_step=False, on_epoch=True, batch_size=batch_size, sync_dist=True)
return loss