手撕ultralytics,换用Lightning训练yolo模型

YOLO 模型作为目标检测的一座高峰不必多说,快又好用。一般来说是用叫做 ultralytics 的 Python 库使用和训练 YOLO 模型。库写得非常好,能很简便地用一个函数启用模型训练。

python 复制代码
from ultralytics import YOLO

model = YOLO("yolo12l.pt")

results = model.train(
    data="/mnt/sda/data/20250312_SARDet100K/sar100k.yaml",
    epochs=100,
    imgsz=640,
)

但如果有更高的自定义需求,这种一键训练的方式就不够用了。如果能把训练代码写成以下标准的 PyTorch 训练形式,那添加自定义修改就方便多了。

python 复制代码
train_loader = DataLoader(train_dataset, batch_size=..., shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=...)

for epoch in range(...):
    model.train()
    for x, y in train_loader:
        x, y = x.to(device), y.to(device)
        pred = model(x)
        loss = criterion(pred, y)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    model.eval()
    with torch.no_grad():
        for x, y in val_loader:
            x, y = x.to(device), y.to(device)
            pred = model(x)
            val_loss = criterion(pred, y)

经过几周的鏖战,终于是把 ultralytics 手撕得差不多,摆脱了 model.train() 的束缚。现在能自由训练目标检测了。

总览

ultralytics 库的逻辑写得很紧凑,完全改写是相当困难的。比较现实的修改方法是借用和继承原库的一些库和方法,使用符合 ultralytics 的数据形式。

中途还遇到了个奇怪的问题。使用 torchvision 的数据增强方法会损坏 YOLO 预训练权重性能,必须用 ultralytics 的数据增强。即使是很小心地控制变量、只选择两者都有的数据增强方法,肉眼完全看不出图像和标注框差异,实验都只能得出一样的结果。那就这样吧。

Lightning 是一个辅助编写 PyTorch 训练代码的库,可以把像是训练循环封装成一个函数,不论是编写还是查阅都会轻松许多。即使没接触过 Lightning 也没关系,后文看函数名也能知道我写的啥逻辑。

本文尽可能简化代码逻辑,主要起示例作用。

数据准备

Dataset

需要构造出一个符合 ultralytics 吸怪的数据集。这个数据集需要是一个字典,包含这些键:

  • img,图片矩阵。用 Image.open() 读出来后除以 255 就能符合要求了
  • bboxes,标注框,以 xywh 形式存储的 List[List] 对象
  • cls,类别,纯数字
  • bbox_format,这个填 "xywh" 就行
  • normalized,填 True
  • ori_shape,原始图片大小
  • ratio_pad,不清楚,填 None 就可以

具体实现看代码。

  • __init__() ,写有数据增强逻辑
  • __len__(),让数据集能被获取长度
  • update_labels_info(),从 ultralytics 摘抄过来用于辅助生成 label 数据的函数
  • __getitem__() 进行实际的数据构造。重点看这个函数的代码
python 复制代码
from torch.utils.data import Dataset
from ultralytics.data.augment import (
    Compose,
    Format,
    LetterBox,
    RandomPerspective,
    RandomHSV,
    RandomFlip,
)
from ultralytics.utils.ops import resample_segments
from ultralytics.utils.instance import Instances

class MyDataset(Dataset):
    def __init__(self, dataset):
        self.dataset = dataset

        pre_transform = RandomPerspective(
            degrees=0.0,
            translate=0.0,
            scale=0.5,
            shear=0.0,
            perspective=0.0,
            pre_transform=LetterBox(new_shape=(512, 512), scaleup=False),
        )
        self.transforms = Compose(
            [
                pre_transform,
                RandomHSV(hgain=0.015, sgain=0.7, vgain=0.4),
                RandomFlip(direction="vertical", p=0.0),
                RandomFlip(direction="horizontal", p=0.5),
            ]
        )
        self.transforms.append(
            Format(
                bbox_format="xywh",
                normalize=True,
                return_mask=False,
                return_keypoint=False,
                return_obb=False,
                batch_idx=True,
                mask_ratio=4,
                mask_overlap=True,
                bgr=0.0,
            )
        )

    def __len__(self):
        return len(self.dataset)

    def update_labels_info(self, label: Dict) -> Dict:
        """
        Update label format for different tasks.

        Args:
            label (dict): Label dictionary containing bboxes, segments, keypoints, etc.

        Returns:
            (dict): Updated label dictionary with instances.

        Note:
            cls is not with bboxes now, classification and semantic segmentation need an independent cls label
            Can also support classification and semantic segmentation by adding or removing dict keys there.
        """
        bboxes = label.pop("bboxes")
        segments = label.pop("segments", [])
        keypoints = label.pop("keypoints", None)
        bbox_format = label.pop("bbox_format")
        normalized = label.pop("normalized")

        # NOTE: do NOT resample oriented boxes
        segment_resamples = 1000
        if len(segments) > 0:
            # make sure segments interpolate correctly if original length is greater than segment_resamples
            max_len = max(len(s) for s in segments)
            segment_resamples = (max_len + 1) if segment_resamples < max_len else segment_resamples
            # list[np.array(segment_resamples, 2)] * num_samples
            segments = np.stack(resample_segments(segments, n=segment_resamples), axis=0)
        else:
            segments = np.zeros((0, segment_resamples, 2), dtype=np.float32)

        bboxes = bboxes if bboxes.size else np.zeros((0, 4), dtype=np.float32)
        label["instances"] = Instances(bboxes, segments, keypoints, bbox_format=bbox_format, normalized=normalized)

        return label

    def __getitem__(self, idx):
        image_path, annotations = self.dataset[idx]

        with Image.open(image_path) as img:
            this_img = img.convert("RGB")

        original_size = this_img.size

        boxes = []
        classes = []
        for one_box in annotations:
            bbox = one_box["bbox"]
            category_id = one_box["category_id"]
            x, y, w, h = bbox
            boxes.append([x, y, w, h])
            classes.append([category_id])

        bboxes = np.array(boxes, dtype=np.float32)
        cls = np.array(classes, dtype=np.float32)

        label = {
            'img': np.array(this_img),
            'bboxes': bboxes,
            'cls': cls,
            'bbox_format': 'xywh',
            'normalized': True,
            'ori_shape': original_size,
            'ratio_pad': None,
        }
        label = self.update_labels_info(label)
        label = self.transforms(label)

        label["img"] = label["img"] / 255.0

        return label

DataLoader

从 ultralytics 摘抄 collate_fn(),之后要传入到 DataLoader 代替默认 collator。

python 复制代码
def collate_fn(batch: List[Dict]) -> Dict:
    """
    Collate data samples into batches.

    Args:
        batch (List[dict]): List of dictionaries containing sample data.

    Returns:
        (dict): Collated batch with stacked tensors.
    """
    new_batch = {}
    batch = [dict(sorted(b.items())) for b in batch]  # make sure the keys are in the same order
    keys = batch[0].keys()
    values = list(zip(*[list(b.values()) for b in batch]))
    for i, k in enumerate(keys):
        value = values[i]
        if k in {"img", "text_feats"}:
            value = torch.stack(value, 0)
        elif k == "visuals":
            value = torch.nn.utils.rnn.pad_sequence(value, batch_first=True)
        if k in {"masks", "keypoints", "bboxes", "cls", "segments", "obb"}:
            value = torch.cat(value, 0)
        new_batch[k] = value
    new_batch["batch_idx"] = list(new_batch["batch_idx"])
    for i in range(len(new_batch["batch_idx"])):
        new_batch["batch_idx"][i] += i  # add target image index for build_targets()
    new_batch["batch_idx"] = torch.cat(new_batch["batch_idx"], 0)
    
    return new_batch

实例化 dataloader。

python 复制代码
from torch.utils.data import DataLoader

train_dataset = MyDataset(train_dataset)

train_loader = DataLoader(
    train_dataset,
    batch_size=16,
    shuffle=True,
    collate_fn=collate_fn,
    num_workers=4,
    pin_memory=True,
)

模型定义

这一步会给原来的 YOLO 模型套层壳,方便后面使用。

  • __init__(),用比较别扭的方式初始化模型并加载预训练权重
  • forward(),输入图像进行正向传播。注意,在 train 状态下,会输出 loss_out;在 eval 状态下,会输出 (inference_out, loss_out)
  • get_loss(),输入 batch 数据和 loss_out,输出 loss
  • get_bboxes,输入 inference_out,输出 bboxes。会用 non_max_suppression 处理 bbox
python 复制代码
from types import SimpleNamespace
from ultralytics.nn.tasks import DetectionModel
from ultralytics.utils import ops

class YOLOModule(DetectionModel):
    def __init__(self, num_class, channels, model="yolo11n.pt", pretrained=False):
        model = YOLO(model)
        cfg = model.yaml

        args = model.args
        args.update(
            {
                "box": 7.5,
                "cls": 0.5,
                "dfl": 1.5,
            }
        )
        self.args = SimpleNamespace(**args)
        self.overrides = args

        super().__init__(cfg, nc=num_class, ch=channels, verbose=False)
        if pretrained:
            self.load(model.model)

    def forward(self, x):
        preds = self.predict(x)
        return preds

    def get_loss(self, batch, preds):
        return self.loss(batch, preds)[0]

    def get_bboxes(self, preds):
        preds = ops.non_max_suppression(
            preds,
            conf_thres=0.25,
            iou_thres=0.7,
            max_det=300,
            return_idxs=False,
        )
        return preds

训练代码 / Lightning Module 定义

以下代码主要看 training_step()validation_step() 的逻辑,看是如何得到最终的 loss 的(Lightning 会帮忙调用 loss.backward() 等函数)。

python 复制代码
class LightningModel(BaseModule):

    def __init__(self, model):
        super().__init__()

        self.model = model

    def forward(self, x):
        return self.model(x)

    def training_step(self, batch, batch_idx):
        x = batch['img']
        batch_size = x.shape[0]
        loss_out = self(x)

        loss = self.model.get_loss(
            batch=batch,
            preds=loss_out,
        )

        box_loss, cls_loss, dfl_loss = loss / batch_size
        loss = box_loss + cls_loss + dfl_loss
        self.log('train/loss', loss, on_step=True, on_epoch=True, batch_size=batch_size, sync_dist=True)
        
        return loss

    def validation_step(self, batch, batch_idx):
        x = batch['img']
        batch_size = x.shape[0]
        inference_out, loss_out = self(x)

        loss = self.model.get_loss(
            batch=batch,
            preds=loss_out,
        )

        box_loss, cls_loss, dfl_loss = loss / batch_size
        loss = box_loss + cls_loss + dfl_loss
        self.log('val/loss', loss, on_step=False, on_epoch=True, batch_size=batch_size, sync_dist=True)

        return loss
相关推荐
Mingze03141 天前
C语言四大排序算法实战
c语言·数据结构·学习·算法·排序算法
IT古董1 天前
【第五章:计算机视觉-项目实战之生成式算法实战:扩散模型】3.生成式算法实战:扩散模型-(3)DDPM模型训练与推理
人工智能·算法·计算机视觉
独自破碎E1 天前
Leetcode2166-设计位集
java·数据结构·算法
Swift社区1 天前
LeetCode 396 - 旋转函数 (Rotate Function)
算法·leetcode·职场和发展
海琴烟Sunshine1 天前
leetcode 88.合并两个有序数组
python·算法·leetcode
Cikiss1 天前
LeetCode160.相交链表【最通俗易懂版双指针】
java·数据结构·算法·链表
一条星星鱼1 天前
深度学习中的归一化:从BN到LN到底是怎么工作的?
人工智能·深度学习·算法·归一化
zsc_1181 天前
基于贪心最小化包围盒策略的布阵算法
算法
哈泽尔都1 天前
运动控制教学——5分钟学会PRM算法!
人工智能·单片机·算法·数学建模·贪心算法·机器人·无人机
2301_789015621 天前
算法与数据结构——排序算法大全
c语言·开发语言·数据结构·c++·算法·排序算法·visual studio