[Semantic Seg][KD]FreeKD: Knowledge Distillation via Semantic Frequency Prompt

1. BaseInfo

Title FreeKD: Knowledge Distillation via Semantic Frequency Prompt
Adress https://arxiv.org/abs/2311.12079
Journal/Time CVPR 2024
Author 北大,浙大
Code
Read

2. Creative Q&A

Knowledge Distillation, KD

  1. 目前知识蒸馏的问题:但教师模型在空间域的连续下采样会干扰学生模型分析需模仿的特定信息,导致精度下降。频域蒸馏面临新挑战,低频带上下文信息,高频带信息更丰富但引入噪声,且并非频带内每个像素对性能贡献相同。
  2. 提出 Frequency Prompt,插入教师模型,在微调时吸收语义频率上下文。
  3. 蒸馏期间,通过 Frequency Prompt 生成像素级频率掩码,定位不同频带中感兴趣像素(Pol)。
  4. 针对密集预测任务,采用位置感知关系频率损失,为学生模型提供高阶空间增强。
    该方法称为 FreeKD,可确定频率蒸馏的最佳定位和范围。

在空间域,随着下采样比例增加,图像分辨率降低;在频域,不同下采样比例呈现出不同的频率信息分布,直观呈现下采样操作对图像在空间域和频域表现的影响

(a) Token Insertion:提示作为 token 插入编码器层。

(b) Sum - wise Insertion:提示在输入图像 RGB 通道上求和插入。

© Ours Insertion(本文方法):提示与中间特征相互作用,从中间特征中提炼频率信息,定位感兴趣像素(Pol)并优化频率带,更好地服务于知识蒸馏过程 。

以往知识蒸馏多使用传统损失函数(如 Kullback - Leibler 散度、均方误差 )处理分类和回归输出或中间特征。


频域

这个没怎么看懂暂时放过。

相关推荐
居7然12 小时前
解锁AI大模型:Prompt工程全面解析
人工智能·prompt·提示词
Jinkxs1 天前
Prompt Engineering+AI工具链:打造个人专属的智能开发助手
人工智能·prompt
爱分享的飘哥2 天前
第六十六篇:AI模型的“口才”教练:Prompt构造策略与自动化实践
人工智能·自动化·prompt·aigc·数据集·llm训练·数据工程
编码小袁2 天前
Prompt工程师基础技术学习指南:从入门到实战
prompt
zhurui_xiaozhuzaizai2 天前
OpenAI官方写的GPT-5 prompt指南
gpt·prompt
sssammmm3 天前
AI入门学习--如何写好prompt?
人工智能·学习·prompt
zzywxc7874 天前
深入解析大模型落地的四大核心技术:微调、提示词工程、多模态应用 及 企业级解决方案,结合代码示例、流程图、Prompt案例及技术图表,提供可落地的实践指南。
人工智能·深度学习·机器学习·数据挖掘·prompt·流程图·editplus
科大饭桶7 天前
AI大模型专题:LLM大模型(Prompt提示词工程)
人工智能·语言模型·llm·prompt·deepseek
六毛的毛7 天前
LangChain入门:内存、记录聊天历史 ChatMessageHistory、模型、提示 ( Prompt )、模式 ( Schema )
人工智能·langchain·prompt
一个天蝎座 白勺 程序猿9 天前
豆包新模型与PromptPilot工具深度测评:AI应用开发的全流程突破
人工智能·ai·大模型·prompt·豆包