R拟合 | 一个分布能看到三个峰,怎么拟合出这三个正态分布的参数? | 高斯混合模型 与 EM算法

1. 效果

已知数据符合上图分布,怎么求下图的三个分布的参数mu, sigma,及每个分布的权重 lambda?

2. 代码: 高斯混合模型(Gaussian Mixture Model,简称GMM)

复制代码
library(mixtools)
set.seed(123) # 确保结果可重复

# 假设x是你的观测数据
x <- rnorm(1000, mean=c(-2, 0, 2), sd=c(1, 1, 1))
x <- c(x, x + 5, x - 5) # 模拟三峰数据

# 绘制密度图
par(mfrow=c(2,1))
plot(density(x), main="三峰密度图", xlab="观测值", xlim=c(-10, 10))

# 拟合三峰正态混合模型
mix <- normalmixEM(x, k=3, maxit=1000, epsilon=1e-4)
summary(mix)
abline(v=mix$mu, col="red", lty=2, lwd=2)

# 绘制拟合结果
# plot(mix, which=2, main="拟合结果")
plot(mix, density = TRUE, w = 1.1)
#plot(mix, which = 2)  # 第2种图,会显示混合分布曲线

3.获取参数

复制代码
> summary(mix)
summary of normalmixEM object:
          comp 1   comp 2   comp 3
lambda  0.513487 0.110986 0.375528
mu     -3.613972 6.917701 2.934937
sigma   2.609374 1.088864 2.020785
loglik at estimate:  -8589.094


> mix$mu
[1] -3.613972  6.917701  2.934937
> mix$sigma
[1] 2.609374 1.088864 2.020785

> mix$lambda
[1] 0.5134868 0.1109857 0.3755276

其中 lambda 是混合模型中的权重参数。每个在0到1之间。和是1。

4.名词解释

  • 高斯混合模型(Gaussian Mixture Model,简称GMM) 是一种概率模型,用于表示由多个高斯分布(正态分布)组成的复杂分布。

  • 谱学习算法(Spectral Learning Algorithms)是一类利用线性代数中的矩阵分解技术来估计模型参数的方法,在自然语言处理、机器学习等领域有广泛的应用。

Ref:

相关推荐
Tiger Z1 天前
《R for Data Science (2e)》免费中文翻译 (第7章) --- Data import(1)
r语言·数据科学·中文翻译
魔力之心2 天前
R notes[2]
开发语言·r语言
Tiger Z3 天前
R 语言科研绘图第 71 期 --- 散点图-边际
r语言·论文·科研·绘图·研究生
小丑尽欢3 天前
R语言根据经纬度获得对应样本的省份
开发语言·r语言
czhc11400756636 天前
Linux 830 shell:expect,ss -ant ,while IFS=read -r line,
linux·运维·r语言
Morpheon6 天前
Intro to R Programming - Lesson 4 (Graphs)
开发语言·r语言
医工交叉实验工坊8 天前
R 语言 ComplexUpset 包实战:替代 Venn 图的高级集合可视化方案
算法·r语言
青春不败 177-3266-05208 天前
R语言贝叶斯方法在生态环境领域中的高阶技术应用
r语言·贝叶斯·生态学·科研绘图·结构方程·环境科学·混合效应
love530love9 天前
怎么更新 cargo.exe ?(Rust 工具链)
人工智能·windows·python·rust·r语言
烟锁池塘柳012 天前
【R语言】R语言中 rbind() 与 merge() 的区别详解
sql·r语言