1. 利用梯度下降法,计算二次函数y=x^2+x+4的最小值
python
def target_function(x):
return x ** 2 + x +4
def gradient(x):
return 2*x + 1
x_init = 10
x = x_init
steps = 100
lr = 0.1
for i in range(100):
x = x - lr*gradient(x)
print(f"最小值 f(x) = {target_function(x):.4f}")
2. 实现交叉熵损失、Softmax以及Sigmoid
python
#实现Softmax、Logsoftmax、Sigmoid以及交叉熵损失
import torch
import torch.nn.functional as F
def softmax(x, dim=-1):
exp_x = torch.exp(x)
return exp_x/torch.sum(exp_x, dim=dim, keepdim=True)
# 1.上溢出问题:当x趋向于无穷大时,会导致exp(x)超过数值范围
# 2.下溢出问题:当x趋向于负无穷大时,会导致exp(x)被截断变成0,加上log会出现log(0)的情况。所以要避免单独计算exp(x)
# 解决方案:1. 减掉最大值 2. 计算log时先拆开
def log_softmax(x, dim=-1):
x = x - torch.max(x,dim=-1,keepdim=True)[0]
return x - torch.log(torch.sum(torch.exp(x),dim=-1,keepdim=True))
# x = torch.rand((2,3))
# print(torch.allclose(F.softmax(x,dim=-1),softmax(x)))
# print(torch.allclose(log_softmax(x),torch.log(softmax(x))))
# print(torch.allclose(F.log_softmax(x,dim=-1),log_softmax(x)))
def sigmoid(x):
return 1/(1+torch.exp(-x))
# print(torch.allclose(torch.sigmoid(x),sigmoid(x)))
def cross_entropy_loss(y_pred, y_true):
y_pred = log_softmax(y_pred,dim=-1)
return -torch.sum(y_true*y_pred, dim=-1)
# input = torch.rand((2,3))
# label_onehot = torch.tensor([[0,0,1],[0,1,0]])
# print(cross_entropy_loss(input,label_onehot))
# # pytorch内置的cross_entropy_loss的输入是类别索引,不是one hot向量
# label = torch.argmax(label_onehot,dim=-1)
# offi_cross_entropy_loss = torch.nn.CrossEntropyLoss(reduction="none")
# print(torch.allclose(offi_cross_entropy_loss(input,label), cross_entropy_loss(input,label_onehot)))
# print(offi_cross_entropy_loss(input,label))