常见代码八股

1. 利用梯度下降法,计算二次函数y=x^2+x+4的最小值

python 复制代码
def target_function(x):
    return x ** 2 + x +4

def gradient(x):
    return 2*x + 1

x_init = 10
x = x_init
steps = 100
lr = 0.1
for i in range(100):
    x = x - lr*gradient(x)

print(f"最小值 f(x) = {target_function(x):.4f}")

2. 实现交叉熵损失、Softmax以及Sigmoid



python 复制代码
#实现Softmax、Logsoftmax、Sigmoid以及交叉熵损失
import torch
import torch.nn.functional as F

def softmax(x, dim=-1):
    exp_x = torch.exp(x)
    return exp_x/torch.sum(exp_x, dim=dim, keepdim=True)

# 1.上溢出问题:当x趋向于无穷大时,会导致exp(x)超过数值范围
# 2.下溢出问题:当x趋向于负无穷大时,会导致exp(x)被截断变成0,加上log会出现log(0)的情况。所以要避免单独计算exp(x)
# 解决方案:1. 减掉最大值 2. 计算log时先拆开

def log_softmax(x, dim=-1):
    x = x - torch.max(x,dim=-1,keepdim=True)[0]
    return x - torch.log(torch.sum(torch.exp(x),dim=-1,keepdim=True))

# x = torch.rand((2,3))
# print(torch.allclose(F.softmax(x,dim=-1),softmax(x)))
# print(torch.allclose(log_softmax(x),torch.log(softmax(x))))
# print(torch.allclose(F.log_softmax(x,dim=-1),log_softmax(x)))

def sigmoid(x):
    return 1/(1+torch.exp(-x))

# print(torch.allclose(torch.sigmoid(x),sigmoid(x)))

def cross_entropy_loss(y_pred, y_true):
    y_pred = log_softmax(y_pred,dim=-1)
    return -torch.sum(y_true*y_pred, dim=-1)

# input = torch.rand((2,3))
# label_onehot = torch.tensor([[0,0,1],[0,1,0]])
# print(cross_entropy_loss(input,label_onehot))

# # pytorch内置的cross_entropy_loss的输入是类别索引,不是one hot向量

# label = torch.argmax(label_onehot,dim=-1)
# offi_cross_entropy_loss = torch.nn.CrossEntropyLoss(reduction="none")

# print(torch.allclose(offi_cross_entropy_loss(input,label), cross_entropy_loss(input,label_onehot)))
# print(offi_cross_entropy_loss(input,label))
相关推荐
青瓷程序设计3 小时前
动物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
F_D_Z4 小时前
数据集相关类代码回顾理解 | sns.distplot\%matplotlib inline\sns.scatterplot
python·深度学习·matplotlib
阿龙AI日记5 小时前
详解Transformer04:Decoder的结构
人工智能·深度学习·自然语言处理
xier_ran10 小时前
深度学习:生成对抗网络(GAN)详解
人工智能·深度学习·机器学习·gan
海边夕阳200610 小时前
【每天一个AI小知识】:什么是循环神经网络?
人工智能·经验分享·rnn·深度学习·神经网络·机器学习
【建模先锋】11 小时前
论文复现!基于SAM-BiGRU网络的锂电池RUL预测
深度学习·论文复现·锂电池寿命预测·锂电池数据集·寿命预测
清云逸仙14 小时前
AI Prompt 工程最佳实践:打造结构化的Prompt
人工智能·经验分享·深度学习·ai·ai编程
松岛雾奈.23015 小时前
深度学习--TensorFlow框架使用
深度学习·tensorflow·neo4j
中杯可乐多加冰15 小时前
逻辑控制案例详解|基于smardaten实现OA一体化办公系统逻辑交互
人工智能·深度学习·低代码·oa办公·无代码·一体化平台·逻辑控制
大佬,救命!!!16 小时前
更换适配python版本直接进行机器学习深度学习等相关环境配置(非仿真环境)
人工智能·python·深度学习·机器学习·学习笔记·详细配置