对 .NET线程 异常退出引发程序崩溃的反思

一:背景

1. 讲故事

前天收到了一个.NET程序崩溃的dump,经过一顿分析之后,发现祸根是因为一个.NET托管线程(DBG=XXXX)的异常退出所致,参考如下:

C# 复制代码
0:011> !t
ThreadCount:      17
UnstartedThread:  0
BackgroundThread: 16
PendingThread:    0
DeadThread:       0
Hosted Runtime:   no
                                                                                                            Lock  
 DBG   ID     OSID ThreadOBJ           State GC Mode     GC Alloc Context                  Domain           Count Apt Exception
   0    1     84d8 000001C0801EAC20    26020 Preemptive  0000000000000000:0000000000000000 000001c080266300 -00001 STA 
   3    2     9d78 000001C0801F8210    2b220 Preemptive  0000000000000000:0000000000000000 000001c080266300 -00001 MTA (Finalizer) 
   4    4     8760 000001C08466C800  102b220 Preemptive  0000000000000000:0000000000000000 000001c080266300 -00001 MTA (Threadpool Worker) 
   ...
  44   16     b2fc 000001C08F949450  102b220 Preemptive  0000000000000000:0000000000000000 000001c080266300 -00001 MTA (GC) (Threadpool Worker) 
  46   15     9904 000001C08F9487B0  102b220 Preemptive  0000000000000000:0000000000000000 000001c080266300 -00001 MTA (Threadpool Worker) 
XXXX    3     a23c 000001C08F948E00  102b220 Preemptive  0000000000000000:0000000000000000 000001c080266300 -00001 Ukn (Threadpool Worker) 

由于线程异常退出,CLR此时完全不知情,当 GC 触发时会在这个XXXX线程上寻找引用根,由于是一个不存在的线程,所以访问它的空间自然就是访问违例,从 ScanStackRoots 函数调用栈上可以清晰的看到,参考如下:

C# 复制代码
0:011> .ecxr
rax=00007ffdbefcc8a0 rbx=000000a42007f5f0 rcx=000000a42187f688
rdx=0000000000000000 rsi=000000a42007ee60 rdi=000000a42007f100
rip=00007ffdbec36cbb rsp=000000a42007f828 rbp=000001c08f948e00
 r8=000000a42007f910  r9=000001c08f948e00 r10=00000fffb7da5860
r11=0555501544555545 r12=ffffffffffffffff r13=0000000000000000
r14=0000000000000000 r15=00007ffdbec14fb0
iopl=0         nv up ei pl nz ac pe cy
cs=0033  ss=002b  ds=002b  es=002b  fs=0053  gs=002b             efl=00010211
coreclr!InlinedCallFrame::FrameHasActiveCall+0x13:
00007ffd`bec36cbb 483b01          cmp     rax,qword ptr [rcx] ds:000000a4`2187f688=????????????????
0:011> k
  *** Stack trace for last set context - .thread/.cxr resets it
 # Child-SP          RetAddr               Call Site
00 000000a4`2007f828 00007ffd`bec36c2e     coreclr!InlinedCallFrame::FrameHasActiveCall+0x13 [D:\a\_work\1\s\src\coreclr\vm\frames.h @ 2927] 
01 000000a4`2007f830 00007ffd`bec36aef     coreclr!ScanStackRoots+0x3a [D:\a\_work\1\s\src\coreclr\vm\gcenv.ee.cpp @ 121] 
02 000000a4`2007f8a0 00007ffd`bec29627     coreclr!GCToEEInterface::GcScanRoots+0x8f [D:\a\_work\1\s\src\coreclr\vm\gcenv.ee.cpp @ 282] 
03 (Inline Function) --------`--------     coreclr!GCScan::GcScanRoots+0x73 [D:\a\_work\1\s\src\coreclr\gc\gcscan.cpp @ 152] 
04 000000a4`2007f8e0 00007ffd`bec14865     coreclr!WKS::gc_heap::background_mark_phase+0xdf [D:\a\_work\1\s\src\coreclr\gc\gc.cpp @ 37866] 
05 000000a4`2007f990 00007ffd`bed286a0     coreclr!WKS::gc_heap::gc1+0x511 [D:\a\_work\1\s\src\coreclr\gc\gc.cpp @ 22315] 
06 000000a4`2007f9f0 00007ffd`bed391c1     coreclr!WKS::gc_heap::bgc_thread_function+0x68 [D:\a\_work\1\s\src\coreclr\gc\gc.cpp @ 39244] 
07 000000a4`2007fa20 00007ffe`3533e8d7     coreclr!<lambda_7303b2ca2c5f80d5f81ddddfcd2de660>::operator()+0xa1 [D:\a\_work\1\s\src\coreclr\vm\gcenv.ee.cpp @ 1441] 
08 000000a4`2007fa50 00007ffe`363f14fc     kernel32!BaseThreadInitThunk+0x17
09 000000a4`2007fa80 00000000`00000000     ntdll!RtlUserThreadStart+0x2c

说实话这种崩溃我见过很多例,但更多的都是 new Thread 创建出来的,所以用 harmony 对它的 Thread.StartCore 进行拦截就能轻松找出,但这次崩溃有一些特殊,它并不是来自于 new Thread 而是线程池散养的线程(ThreadPool),这对问题分析增加了不少难度,既然是反思,那就好好的总结此类问题的解决思路吧。

二:故障重现

1. 问题代码

为了方便演示,我们用 C# 调用 C,然后在 C 中通过 TerminateThread 让程序异常退出,首先看下 C 代码:

C 复制代码
extern "C"
{
	_declspec(dllexport) void dowork();
}

#include "iostream"
#include <Windows.h>

using namespace std;

void dowork()
{
	DWORD threadId = GetCurrentThreadId();
	printf("C++:当前线程ID(十进制):%lu,十六进制:0x%X\n", threadId, threadId);
	printf("C++:我准备退出了哦。。。\n");

	TerminateThread(GetCurrentThread(), 1);
}

接下来在 C# 中调用导出的 dowork 方法,参考代码如下:

C# 复制代码
namespace Example_1_1
{
    internal class Program
    {
        static void Main(string[] args)
        {
            DoRequest();
            Console.ReadLine();
        }

        static void DoRequest()
        {
            Task.Run(() =>
            {
                Console.WriteLine("1. 调用 C++ 代码...");
                try
                {
                    dowork();
                    Console.WriteLine("2. C++ 代码执行完毕...");
                }
                catch (Exception ex)
                {
                    Console.WriteLine($"2. C++ 代码执行异常: {ex.Message}");
                }
            });
        }

        [DllImport("Example_1_2", CallingConvention = CallingConvention.Cdecl)]
        public extern static void dowork();
    }
}

最后将程序运行起来,用windbg附加,可以看到果然有一个 XXXX 线程,截图如下:

故障已经复现,接下来就是寻找到底是谁让 ThreadPool 线程异常退出了。。。

三:如何寻找第一现场

1. process monitor

要想找到这个问题的祸根,需要找到调用 TerminateThread 函数的调用栈,一种简单粗暴的方法就是用 process monitor,根据 Windows 的ETW 规则,一个线程退出时会发出一个 Event 事件,这种事件可以被 process monitor 捕获,并且还能记录到调用栈,有了想法之后说干就干,配置界面如下:

接下来运行程序,使用 windbg 附加进程,寻找问题线程ID,参考如下:

C# 复制代码
0:005> !t
ThreadCount:      5
UnstartedThread:  0
BackgroundThread: 3
PendingThread:    0
DeadThread:       1
Hosted Runtime:   no
                                                                                                            Lock  
 DBG   ID     OSID ThreadOBJ           State GC Mode     GC Alloc Context                  Domain           Count Apt Exception
   0    1     153c 00000202C603C240    2a020 Preemptive  00000202CA819060:00000202CA81B020 00000202c6088980 -00001 MTA 
   3    2      afc 00000202C60F0DB0    2b220 Preemptive  0000000000000000:0000000000000000 00000202c6088980 -00001 MTA (Finalizer) 
XXXX    4     4718 00000202C6057D10  102b220 Preemptive  00000202CA80CF70:00000202CA80E740 00000202c6088980 -00001 Ukn (Threadpool Worker) 
   4    5     4420 00000202C605D510  302b220 Preemptive  00000202CA80EB40:00000202CA810760 00000202c6088980 -00001 MTA (Threadpool Worker) 
0:005> ? 4718
Evaluate expression: 18200 = 00000000`00004718

从卦中可以看到是一个叫 osid=18200 的线程异常退出,接下来从 process monitor 界面上果然看到了一个Thread ID:18200Thread Exit 事件,完美,截图如下:

接下来就是双击,打开 Stack 选项卡,可以清晰的看到是有人调用了 Example_1_2!dowork 导致的退出,截图如下:

在真实项目中,我相信你看到 dowork 函数应该知道发生了什么,排查范围是不是一下子就小了很多。。。相信这个问题你能轻松搞定。

2. MinHook 注入

上面的 process monitor 虽好,但也有一个让人不如意的地方,那就是不能显示托管栈,这个确实没办法,那有没有办法让我看到托管栈呢?如果能看到就完美了,做法非常简单,对 kernel32!TerminateThread 进行注入即可,一旦有人执行了这个方法,记录 Terminate 线程的线程ID以及调用栈即可,完整代码如下:

C# 复制代码
namespace Example_1_1
{
    internal class Program
    {
        static void Main(string[] args)
        {
            // Install the hook before any TerminateThread calls can occur
            TerminateThreadHook.InstallHook();

            Console.WriteLine("Hook installed. Starting test...");

            DoRequest();

            // Uninstall hook when done
            TerminateThreadHook.UninstallHook();

            Console.ReadLine();
        }

        static void DoRequest()
        {
            Task.Run(() =>
            {
                Console.WriteLine("1. 调用 C++ 代码...");
                try
                {
                    dowork();
                    Console.WriteLine("2. C++ 代码执行完毕...");
                }
                catch (Exception ex)
                {
                    Console.WriteLine($"2. C++ 代码执行异常: {ex.Message}");
                }
            });
        }

        [DllImport("Example_1_2", CallingConvention = CallingConvention.Cdecl)]
        public extern static void dowork();
    }

    public static class TerminateThreadHook
    {
        // TerminateThread function signature
        [UnmanagedFunctionPointer(CallingConvention.StdCall)]
        private delegate bool TerminateThreadDelegate(IntPtr hThread, uint dwExitCode);

        private static TerminateThreadDelegate _originalTerminateThread;
        private static IntPtr _terminateThreadPtr = IntPtr.Zero;

        public static void InstallHook()
        {
            // 1. Get TerminateThread address from kernel32.dll
            _terminateThreadPtr = MinHook.GetProcAddress(
                MinHook.GetModuleHandle("kernel32.dll"), "TerminateThread");

            if (_terminateThreadPtr == IntPtr.Zero)
            {
                Console.WriteLine("Failed to find TerminateThread address.");
                return;
            }

            // 2. Initialize MinHook
            var status = MinHook.MH_Initialize();
            if (status != MinHook.MH_STATUS.MH_OK)
            {
                Console.WriteLine($"MH_Initialize failed: {status}");
                return;
            }

            // 3. Create Hook
            var detourPtr = Marshal.GetFunctionPointerForDelegate(
                new TerminateThreadDelegate(HookedTerminateThread));

            status = MinHook.MH_CreateHook(_terminateThreadPtr, detourPtr, out var originalPtr);
            if (status != MinHook.MH_STATUS.MH_OK)
            {
                Console.WriteLine($"MH_CreateHook failed: {status}");
                return;
            }

            _originalTerminateThread = Marshal.GetDelegateForFunctionPointer<TerminateThreadDelegate>(originalPtr);

            // 4. Enable Hook
            status = MinHook.MH_EnableHook(_terminateThreadPtr);
            if (status != MinHook.MH_STATUS.MH_OK)
            {
                Console.WriteLine($"MH_EnableHook failed: {status}");
                return;
            }

            Console.WriteLine("TerminateThread hook installed successfully!");
        }

        public static void UninstallHook()
        {
            if (_terminateThreadPtr == IntPtr.Zero)
                return;

            // 1. Disable Hook
            var status = MinHook.MH_DisableHook(_terminateThreadPtr);
            if (status != MinHook.MH_STATUS.MH_OK)
                Console.WriteLine($"MH_DisableHook failed: {status}");

            // 2. Uninitialize MinHook
            status = MinHook.MH_Uninitialize();
            if (status != MinHook.MH_STATUS.MH_OK)
                Console.WriteLine($"MH_Uninitialize failed: {status}");

            _terminateThreadPtr = IntPtr.Zero;
            Console.WriteLine("Hook uninstalled.");
        }

        private static bool HookedTerminateThread(IntPtr hThread, uint dwExitCode)
        {
            // Get current thread ID
            uint currentThreadId = GetCurrentThreadId();
            uint targetThreadId = GetThreadId(hThread);

            Console.WriteLine($"[HOOK] TerminateThread intercepted!");
            Console.WriteLine($"  Attempting to terminate thread: 0x{targetThreadId.ToString("X")} (ID: {targetThreadId})");
            Console.WriteLine($"  Called from thread ID: {currentThreadId}");

            // Print managed call stack
            Console.WriteLine("\n  [Managed Call Stack]:");
            Console.WriteLine(Environment.StackTrace);

            return _originalTerminateThread(hThread, dwExitCode);
        }

        [DllImport("kernel32.dll")]
        private static extern uint GetCurrentThreadId();

        [DllImport("kernel32.dll")]
        private static extern uint GetThreadId(IntPtr hThread);

    }

    public static class MinHook
    {
        public enum MH_STATUS
        {
            MH_OK = 0,
            MH_ERROR_ALREADY_INITIALIZED,
            MH_ERROR_NOT_INITIALIZED,
            // ... other status codes
        }

        [DllImport("MinHook.x64.dll", CallingConvention = CallingConvention.Cdecl)]
        public static extern MH_STATUS MH_Initialize();

        [DllImport("MinHook.x64.dll", CallingConvention = CallingConvention.Cdecl)]
        public static extern MH_STATUS MH_Uninitialize();

        [DllImport("MinHook.x64.dll", CallingConvention = CallingConvention.Cdecl)]
        public static extern MH_STATUS MH_CreateHook(IntPtr pTarget, IntPtr pDetour, out IntPtr ppOriginal);

        [DllImport("MinHook.x64.dll", CallingConvention = CallingConvention.Cdecl)]
        public static extern MH_STATUS MH_EnableHook(IntPtr pTarget);

        [DllImport("MinHook.x64.dll", CallingConvention = CallingConvention.Cdecl)]
        public static extern MH_STATUS MH_DisableHook(IntPtr pTarget);

        [DllImport("kernel32.dll", CharSet = CharSet.Unicode)]
        public static extern IntPtr GetModuleHandle(string lpModuleName);

        [DllImport("kernel32.dll", CharSet = CharSet.Ansi)]
        public static extern IntPtr GetProcAddress(IntPtr hModule, string lpProcName);
    }
}

从卦中信息看果然拦截到了,通过 Environment.StackTrace 属性将托管栈完美的展示出来,但这里也有一个小遗憾就是没看到非托管部分,如果真想要的话可以借助 dbghelp.dll,这个就不细说了,总之根据这些调用栈日志 再比对 dump 中的异常退出线程,最终就会真相大白。。。

四:总结

如今.NET的主战场在工控,而工控中有大量的C#和C++交互的场景,C++处理不慎就会导致C#灾难性后果,这篇文章所输出的经验希望给后来者少踩坑吧!