Advances and Challenges in Foundation Agents--Memory调研

https://arxiv.org/pdf/2504.01990#page=64.19

Memory

1 Representation

名称 引用
Sensory Text-based RecAgent 2025 95
Sensory Text-based CoPS 2024 29
Sensory Text-based MemoryBank 2024 300
Sensory Text-based Memory Sandbox 2023 46
Sensory Multi-modal VideoAgent 2024 88
Sensory Multi-modal WorldGPT 2024 48
Sensory Multi-modal AgentS 2024 51
Sensory Multi-modal OS-Copilot 2024 117
Sensory Multi-modal MuLan 2024 3
Short-term Context MemGPT 2023 203
Short-term Context KARMA 2024 10
Short-term Context LSFS 2024 1
Short-term Context OSCAR 2024 15
Short-term Context RCI 2023 445
Short-term Working Generative Agent 2023 2705
Short-term Working RLP 2023 17
Short-term Working CALYPSO 2023 62
Short-term Working HiAgent 2024 24
Long-term Semantic AriGraph 2024 27
Long-term Semantic RecAgent 2025 95
Long-term Semantic HippoRAG 2024 124
Long-term Episodic MobileGPT 2023 30
Long-term Episodic MemoryBank 2024 300
Long-term Episodic Episodic Verbalization 2024 6
Long-term Episodic MrSteve 2024 5
Long-term Procedural AAG 2024 1
Long-term Procedural Cradle 2024 55
Long-term Procedural ARVIS-1 2024 121
Long-term Procedural LARP 2023 20

2 Lifecycle

名称 引用
Acquisition Information Compression HiAgent 2024 24
Acquisition Information Compression LMAgent 2024 5
Acquisition Information Compression ReadAgent 2024 39
Acquisition Information Compression M2WF 2025 2
Acquisition ExperienceConsolidation ExpeL 2024 300
Acquisition ExperienceConsolidation MindOS 2024/5 4/40
Encoding Selective Attention AgentCorrd 2024 30
Encoding Selective Attention MS 2024 19
Encoding Selective Attention GraphVideoAgent 2025 1
Encoding Selective Attention A-MEM 2024/5 6/45
Encoding Multi-modalFusion Optimus-1 2024 41
Encoding Multi-modalFusion Optimus-2 2025 8
Encoding Multi-modalFusion JARVIS-1 2024 121
Derivation Reflection Agent S 2024 51
Derivation Reflection OSCAR 2024 15
Derivation Reflection R2D2 2025 0
Derivation Reflection Mobile-Agent-E 2025 39
Derivation Summarization SummEdits 2023 72
Derivation Summarization SCM 2023 22
Derivation Summarization Healthcare Copilot 2024/5 30/59
Derivation Knowledge Distillation Knowagent 2024 56
Derivation Knowledge Distillation AoTD 2024 7
Derivation Knowledge Distillation LDPD 2025 8
Derivation Knowledge Distillation Sub-goal Distillation 2024 3
Derivation Knowledge Distillation MAGDi 2024 22
Derivation Selective Forgetting Lyfe Agent 2023 41
Derivation Selective Forgetting TiM 2023 57
Derivation Selective Forgetting MemoryBank 2024 301
Derivation Selective Forgetting S3 2023/4 100/40
Retrieval Indexing HippoRAG 2024 126
Retrieval Indexing TradingGPT 2023 64
Retrieval Indexing LongMemEval 2024 33
Retrieval Indexing SeCom 2025 5
Retrieval Matching Product Keys 2019 161
Retrieval Matching OSAgent 2024 5/40
Neural Memory Associative Memory Hopfield Networks 2017/20 277/749
Neural Memory Associative Memory Neural Turing Machines 2022 17
Neural Memory ParameterIntegration MemoryLLM 2024 34
Neural Memory ParameterIntegration SELF-PARAM 2024 2
Neural Memory ParameterIntegration MemoRAG 2024 11
Neural Memory ParameterIntegration TTT-Layer 2024 128
Neural Memory ParameterIntegration Titans 2024 71
Neural Memory ParameterIntegration R3Mem 2025 3
Utilization RAG RAGLAB 2024 17
Utilization RAG Adaptive Retrieval 2022 681
Utilization RAG Atlas 2023/4 4/5
Utilization Long-context Modeling RMT 2022/3 208/105
Utilization Long-context Modeling AutoCompresso 2023 211
Utilization Long-context Modeling ICAE 2023 169
Utilization Long-context Modeling Gist 2023 239
Utilization Long-context Modeling CompAct 2024 27
Utilization Alleviating Hallucination Lamini 2024 11
Utilization Alleviating Hallucination Memoria 2023 7
Utilization Alleviating Hallucination PEER 2024 48/65

例如,RecAgent[259]采用基于llm的感觉记忆模块对原始观测进行编码,同时过滤噪声和不相关的内容。

例如,RecAgent[259]采用了一种带有重要性评分系统的注意力机制,该系统为压缩的观察值分配相关性分数,优先考虑关键输入,如特定项目的交互,同时强调不太重要的动作。

例如,RecAgent[259]通过将每个观测值与用户行为模拟环境中模拟回合的开始相对应的时间戳相关联来建模保留,该时间戳表示为⟨observation,重要性评分,时间戳⟩

在像MemoryBank[261]这样的人工智能伙伴系统中,语义记忆以自然语言构建用户画像,而情景记忆保留交互历史,增强个性化和上下文感知行为。

在更细粒度的遗忘机制中,MemoryBank[261]采用艾宾浩斯遗忘曲线(Ebbinghaus forgetting Curve)来量化遗忘率,同时考虑了时间衰减和间隔效应,即重新学习信息比第一次学习更容易的原则。

Expel[96]构建了一个经验库,从训练任务中收集和提取见解,促进对未见任务的推广。

ExpeL[96]利用反思来收集过去的经验,以便将其推广到看不见的任务,并支持失败后的反复尝试。

通过像reflex[75]和ExpeL[96]这样的系统,智能体通过自主管理经验收集、分析和应用的完整周期,实现了复杂的体验式学习,使它们能够从成功和失败中有效地学习。