大纲
1.Dubbo服务启动源码细节
2.Dubbo对外暴露接口的反射处理过程
3.Dubbo启动过程的Refresh源码
4.剖析SPI自动激活@Activate注解
5.Dubbo服务启动的init源码流程
6.Dubbo服务本地发布的源码细节
7.Javassist技术动态生成类的源码细节
8.Protocol SPI自适应机制的源码细节
9.Protocol SPI进行本地发布的源码细节
10.Dubbo服务远程发布的源码细节
11.RegistryProtocol远程发布的源码细节
12.基于ZooKeeper的注册中心实现细节
13.DubboProtocol发布过程的源码细节
14.结合Exchange实例梳理SPI自适应机制原理
15.Exchange网络组件的源码细节
16.Transporter网络通信组件的源码细节
17.NettyServer构建和打开的全流程
18.NettyServerHandler的源码细节
19.NettyServer如何转发请求给业务线程池
1.Dubbo服务启动源码细节
Dubbo服务启动过程中,在执行服务实例的刷新操作时,首先会初始化一个ProviderConfig即provider服务实例。在下面的源码中可以看到:model组件体系对整个Dubbo源码的运行很关键的,可以认为它是SPI机制使用的入口。而ScopeModel是model组件体系的一个基础,ScopeModel类型是可以转换为ModuleModel、ApplicationModel。比如像ModuleServiceRepository,ModelEnvironment,BeanFactory等很多通用的组件都可以通过ScopeModel去获取。
typescript
-> ServiceConfig.export()
-> getScopeModel().getDeployer().start()
-> AbstractConfig.refresh()
-> ServiceConfigBase.preProcessRefresh()
-> ServiceConfigBase.convertProviderIdToProvider()
-> AbstractConfig.assignProperties()
-> AbstractConfig.processExtraRefresh()
-> AbstractInterfaceConfig.processExtraRefresh()
public class ServiceConfig<T> extends ServiceConfigBase<T> {
...
public void export() {
...
//ensure start module, compatible with old api usage
//getScopeModel()返回的是一个ModuleModel
getScopeModel().getDeployer().start();
//2.执行服务实例的刷新操作,也就是ProviderConfig->MethodConfig->ArgumentConfig体系
if (!this.isRefreshed()) {
this.refresh();
}
...
}
...
}
public abstract class AbstractConfig implements Serializable {
...
public void refresh() {
//check and init before do refresh
//preProcessRefresh()是一个抽象方法
//AbstractConfig的子类ServiceConfigBase的该方法会初始化一个ProviderConfig即provider服务实例
preProcessRefresh();
//model组件体系对整个Dubbo源码的运行很关键的,可以认为它是SPI机制使用的入口
//ScopeModel是一个基础,ScopeModel类型是可以转换为ModuleModel、ApplicationModel
//比如像ModuleServiceRepository,ModelEnvironment,BeanFactory等很多通用的组件都可以通过ScopeModel去获取
Environment environment = getScopeModel().getModelEnvironment();//获取Environment对象
...
//使用反射注入需要的方法
assignProperties(this, environment, subProperties, subPropsConfiguration);
//process extra refresh of subclass, e.g. refresh method configs
//该方法中preferredPrefix是关键,它的值可能是:dubbo.service.org.apache.dubbo.demo.DemoService
//其中dubbo.service代表dubbo服务名称的一个固定前缀,属于固定拼接的
//而中间的org.apache.dubbo.demo,则是从服务接口所在包名里截取出来的,并且最后会加上服务接口的接口名
//所以preferredPrefix会作为当前Dubbo服务的全限定的名字
//而这段refresh的代码,作用就是处理这个preferredPrefix以及其他相关的配置信息
processExtraRefresh(preferredPrefix, subPropsConfiguration);
...
}
...
}
public abstract class ServiceConfigBase<T> extends AbstractServiceConfig {
//The provider configuration
protected ProviderConfig provider;
//The providerIds
protected String providerIds;
...
protected void preProcessRefresh() {
super.preProcessRefresh();
convertProviderIdToProvider();
if (provider == null) {
provider = getModuleConfigManager().getDefaultProvider().orElseThrow(() -> new IllegalStateException("Default provider is not initialized"));
}
}
protected void convertProviderIdToProvider() {
if (provider == null && StringUtils.hasText(providerIds)) {
provider = getModuleConfigManager().getProvider(providerIds).orElseThrow(() -> new IllegalStateException("Provider config not found: " + providerIds));
}
}
...
}
//ProviderConfig表示Provider服务实例对应的一些默认的配置
public class ProviderConfig extends AbstractServiceConfig {
//Provider服务实例所在的地址
private String host;
//Provider服务实例暴露出去对外提供服务的端口号
private Integer port;
//NettyServer线程模型中的线程数量
private Integer threads;
//处理IO的线程数量
private Integer iothreads;
//线程池中的队列长度
private Integer queues;
//能接收的最大连接数
private Integer accepts;
//序列化的字符集编码
private String charset;
//最大的负载
private Integer payload;
//网络IO的buffer大小
private Integer buffer;
//Transporter名字
private String transporter;
//对于不同的网络事件,可以采用不同的策略来分发给业务线程池进行处理,dispatcher便代表一种策略
private String dispatcher;
...
}
2.Dubbo对外暴露接口的反射处理过程
将对外暴露的接口里的每个方法都构建一个MethodConfig,每个MethodConfig里也需要一批ArgumentConfig。因为作为对外暴露的接口,后续要被人调用,肯定需要知道方法和参数的情况。总不可能每次都进行反射调用,拿到method和args去进行处理。所以在刚开始启动时就对接口进行解析,拿到所有的method和args来进行处理。
typescript
-> ServiceConfig.export()
-> getScopeModel().getDeployer().start()
-> AbstractConfig.refresh()
-> ServiceConfigBase.preProcessRefresh()
-> ServiceConfigBase.convertProviderIdToProvider()
-> AbstractConfig.assignProperties()
-> AbstractConfig.processExtraRefresh()
-> AbstractInterfaceConfig.processExtraRefresh()
public abstract class AbstractConfig implements Serializable {
...
public void refresh() {
//check and init before do refresh
//preProcessRefresh()是一个抽象方法
//AbstractConfig的子类ServiceConfigBase的该方法会初始化一个ProviderConfig即provider服务实例
preProcessRefresh();
//model组件体系对整个Dubbo源码的运行很关键的,可以认为它是SPI机制使用的入口
//ScopeModel是一个基础,ScopeModel类型是可以转换为ModuleModel、ApplicationModel
//比如像ModuleServiceRepository,ModelEnvironment,BeanFactory等很多通用的组件都可以通过ScopeModel去获取
Environment environment = getScopeModel().getModelEnvironment();//获取Environment对象
...
//使用反射注入需要的方法
assignProperties(this, environment, subProperties, subPropsConfiguration);
//process extra refresh of subclass, e.g. refresh method configs
//该方法中preferredPrefix是关键,它的值可能是:dubbo.service.org.apache.dubbo.demo.DemoService
//其中dubbo.service代表dubbo服务名称的一个固定前缀,属于固定拼接的
//而中间的org.apache.dubbo.demo,则是从服务接口所在包名里截取出来的,并且最后会加上服务接口的接口名
//所以preferredPrefix会作为当前Dubbo服务的全限定的名字
//而这段refresh的代码,作用就是处理这个preferredPrefix以及其他相关的配置信息
processExtraRefresh(preferredPrefix, subPropsConfiguration);
...
}
...
}
public abstract class AbstractInterfaceConfig extends AbstractMethodConfig {
...
//该方法就是通过反射技术,对我们暴露的接口、方法和参数进行反射
//把方法和参数都进行MethodConfig、ArgumentConfig封装,以及做一些校验处理
@Override
protected void processExtraRefresh(String preferredPrefix, InmemoryConfiguration subPropsConfiguration) {
if (StringUtils.hasText(interfaceName)) {
//先通过反射技术拿到对外暴露服务的接口
Class<?> interfaceClass;
interfaceClass = ClassUtils.forName(interfaceName);
...
//Auto create MethodConfig/ArgumentConfig according to config props
Map<String, String> configProperties = subPropsConfiguration.getProperties();
//获取到对外暴露的接口的各种方法
Method[] methods;
methods = interfaceClass.getMethods();
...
//接下来对暴露的服务接口进行处理,通过反射技术拿到接口Class
//以及接口Class里面的方法,每个方法其实就是当前服务对外暴露的一个可以调用的接口
for (Method method : methods) {
if (ConfigurationUtils.hasSubProperties(configProperties, method.getName())) {
MethodConfig methodConfig = getMethodByName(method.getName());
//在这个过程中,非常关键的一点就是要把接口里的每个方法都创建一个MethodConfig,每个MethodConfig里,也需要一批ArgumentConfig
//因为作为对外暴露的接口在后续被人调用时,肯定需要知道方法和参数的情况,总不可能每次都进行反射调用来拿到method和args去进行处理
//所以在刚开始启动时就对接口进行解析,拿到所有的method和args来进行处理
//Add method config if not found
if (methodConfig == null) {
//会给对外暴露的服务的每个方法,创建一个对应的MethodConfig
methodConfig = new MethodConfig();
methodConfig.setName(method.getName());
this.addMethod(methodConfig);
}
//Add argument config
//dubbo.service.{interfaceName}.{methodName}.{arg-index}.xxx=xxx
java.lang.reflect.Parameter[] arguments = method.getParameters();
for (int i = 0; i < arguments.length; i++) {
if (getArgumentByIndex(methodConfig, i) == null && hasArgumentConfigProps(configProperties, methodConfig.getName(), i)) {
//对方法里的每个args参数都创建一个对应的ArgumentConfig
ArgumentConfig argumentConfig = new ArgumentConfig();
argumentConfig.setIndex(i);
methodConfig.addArgument(argumentConfig);
}
}
}
}
...
}
}
...
}
public class MethodConfig extends AbstractMethodConfig {
//方法名称
private String name;
//统计
private Integer stat;
//方法是否支持重试
private Boolean retry;
//方法是否具有可靠性
private Boolean reliable;
//对该方法最多可以同时允许多少线程并发访问
private Integer executes;
//方法是否过期
private Boolean deprecated;
//方法是否启用sticky机制
//sticky表示粘滞连接(粘滞调用),所谓粘滞连接(粘滞调用)是指Consumer会尽可能的调用同一个Provider节点,除非这个Provider无法提供服务
//也就是把一个Consumer端和一个Provider端粘在一起
private Boolean sticky;
//是否需要返回值
private Boolean isReturn;
//异步调用的回调实例
private Object oninvoke;
//异步调用的回调方法
private String oninvokeMethod;
//方法的入参列表
private List<ArgumentConfig> arguments;
...
}
public class ArgumentConfig implements Serializable {
//该参数在方法中的入参顺序
private Integer index = -1;
//该参数在方法中的入参类型
private String type;
...
}
3.Dubbo启动过程的Refresh源码
scss
-> ServiceConfig.export()
-> getScopeModel().getDeployer().start()
-> AbstractConfig.refresh()
-> ServiceConfigBase.preProcessRefresh()
-> ServiceConfigBase.convertProviderIdToProvider()
-> AbstractConfig.assignProperties()
-> AbstractConfig.processExtraRefresh()
-> AbstractInterfaceConfig.processExtraRefresh()
-> ServiceConfig.postProcessRefresh()
-> ServiceConfig.checkAndUpdateSubConfigs()
public abstract class AbstractConfig implements Serializable {
...
public void refresh() {
//check and init before do refresh
//preProcessRefresh()是一个抽象方法
//AbstractConfig的子类ServiceConfigBase的该方法会初始化一个ProviderConfig即provider服务实例
preProcessRefresh();
//model组件体系对整个Dubbo源码的运行很关键的,可以认为它是SPI机制使用的入口
//ScopeModel是一个基础,ScopeModel类型是可以转换为ModuleModel、ApplicationModel
//比如像ModuleServiceRepository,ModelEnvironment,BeanFactory等很多通用的组件都可以通过ScopeModel去获取
Environment environment = getScopeModel().getModelEnvironment();//获取Environment对象
...
//使用反射注入需要的方法
assignProperties(this, environment, subProperties, subPropsConfiguration);
//process extra refresh of subclass, e.g. refresh method configs
//该方法中preferredPrefix是关键,它的值可能是:dubbo.service.org.apache.dubbo.demo.DemoService
//其中dubbo.service代表dubbo服务名称的一个固定前缀,属于固定拼接的
//而中间的org.apache.dubbo.demo,则是从服务接口所在包名里截取出来的,并且最后会加上服务接口的接口名
//所以preferredPrefix会作为当前Dubbo服务的全限定的名字
//而这段refresh的代码,作用就是处理这个preferredPrefix以及其他相关的配置信息
processExtraRefresh(preferredPrefix, subPropsConfiguration);
...
postProcessRefresh();
refreshed.set(true);
}
...
}
public abstract class AbstractInterfaceConfig extends AbstractMethodConfig {
...
//该方法就是通过反射技术,对我们暴露的接口、方法和参数进行反射
//把方法和参数都进行MethodConfig、ArgumentConfig封装,以及做一些校验处理
@Override
protected void processExtraRefresh(String preferredPrefix, InmemoryConfiguration subPropsConfiguration) {
...
//refresh MethodConfigs,刚才解析出来的一些MethodConfig
//这个步骤属于上一个步骤的后置的处理,本质上来说是在延续对MethodConfig的处理
List<MethodConfig> methodConfigs = this.getMethods();
if (methodConfigs != null && methodConfigs.size() > 0) {
//whether ignore invalid method config
Object ignoreInvalidMethodConfigVal = getEnvironment().getConfiguration()
.getProperty(ConfigKeys.DUBBO_CONFIG_IGNORE_INVALID_METHOD_CONFIG, "false");
boolean ignoreInvalidMethodConfig = Boolean.parseBoolean(ignoreInvalidMethodConfigVal.toString());
Class<?> finalInterfaceClass = interfaceClass;
List<MethodConfig> validMethodConfigs = methodConfigs.stream().filter(methodConfig -> {
methodConfig.setParentPrefix(preferredPrefix);
//在这里都要去关联一下model组件
methodConfig.setScopeModel(getScopeModel());
methodConfig.refresh();
//verify method config
return verifyMethodConfig(methodConfig, finalInterfaceClass, ignoreInvalidMethodConfig);
}).collect(Collectors.toList());
this.setMethods(validMethodConfigs);
}
}
...
}
public class ServiceConfig<T> extends ServiceConfigBase<T> {
...
protected void postProcessRefresh() {
super.postProcessRefresh();
//检查并更新各项配置
checkAndUpdateSubConfigs();
}
private void checkAndUpdateSubConfigs() {
...
//下面这行代码就利用了SPI机制,使用了Activate自动激活的功能:this.getExtensionLoader(ConfigInitializer.class).getActivateExtension(...)
List<ConfigInitializer> configInitializers = this.getExtensionLoader(ConfigInitializer.class)
.getActivateExtension(URL.valueOf("configInitializer://", getScopeModel()), (String[]) null);
...
}
...
}
4.剖析SPI自动激活@Activate注解
在ServiceConfig中使用自动激活的示例入口如下:
kotlin
this.getExtensionLoader(ConfigInitializer.class).getActivateExtension(
URL.valueOf("configInitializer://", getScopeModel()), (String[]) null
);
这样在下面传入的URL就是"configInitializer://"。
scss
public class ExtensionLoader<T> {
private final Map<String, Object> cachedActivates = Collections.synchronizedMap(new LinkedHashMap<>());
private final Map<String, Set<String>> cachedActivateGroups = Collections.synchronizedMap(new LinkedHashMap<>());
private final Map<String, String[][]> cachedActivateValues = Collections.synchronizedMap(new LinkedHashMap<>());
...
public List<T> getActivateExtension(URL url, String[] values) {
return getActivateExtension(url, values, null);
}
//根据@Activate注解,对SPI接口可以自动激活多个实现类
//在ServiceConfig.checkAndUpdateSubConfigs()会通过如下代码被调用:
//this.getExtensionLoader(ConfigInitializer.class).getActivateExtension(URL.valueOf("configInitializer://", getScopeModel()), (String[]) null);
public List<T> getActivateExtension(URL url, String[] values, String group) {
checkDestroyed();
//solve the bug of using @SPI's wrapper method to report a null pointer exception.
Map<Class<?>, T> activateExtensionsMap = new TreeMap<>(activateComparator);
//values就是扩展名
List<String> names = values == null ? new ArrayList<>(0) : asList(values);
Set<String> namesSet = new HashSet<>(names);
if (!namesSet.contains(REMOVE_VALUE_PREFIX + DEFAULT_KEY)) {
if (cachedActivateGroups.size() == 0) {
synchronized (cachedActivateGroups) {
//cache all extensions
if (cachedActivateGroups.size() == 0) {
//首先会基于cachedActivates等缓存字段来加载,缓存取不到再基于配置文件去加载扩展点接口所有的实现类
getExtensionClasses();
//如果扩展点接口的所有实现类都加了@Activate注解,那么这些注解都会被cachedActivates缓存起来
//下面便对所有实现类的@Activate注解进行遍历和处理
for (Map.Entry<String, Object> entry : cachedActivates.entrySet()) {
//拿到缓存好的名称,也就是扩展名
String name = entry.getKey();
//拿到自动激活的对象实例(@Activate注解)
Object activate = entry.getValue();
String[] activateGroup, activateValue;
//@Activate注解中的配置
if (activate instanceof Activate) {
//从@Activate注解里提取出来对应的group和value两个参数
activateGroup = ((Activate) activate).group();
activateValue = ((Activate) activate).value();
} else if (activate instanceof com.alibaba.dubbo.common.extension.Activate) {
activateGroup = ((com.alibaba.dubbo.common.extension.Activate) activate).group();
activateValue = ((com.alibaba.dubbo.common.extension.Activate) activate).value();
} else {
continue;
}
//把从Activate注解提取出来的group参数按扩展名name进行缓存
cachedActivateGroups.put(name, new HashSet<>(Arrays.asList(activateGroup)));
String[][] keyPairs = new String[activateValue.length][];
for (int i = 0; i < activateValue.length; i++) {
if (activateValue[i].contains(":")) {
keyPairs[i] = new String[2];
String[] arr = activateValue[i].split(":");
keyPairs[i][0] = arr[0];
keyPairs[i][1] = arr[1];
} else {
keyPairs[i] = new String[1];
keyPairs[i][0] = activateValue[i];
}
}
//把从Activate注解提取出来的value参数按扩展名name进行缓存
cachedActivateValues.put(name, keyPairs);
}
}
}
}
//traverse all cached extensions
cachedActivateGroups.forEach((name, activateGroup) -> {
if (isMatchGroup(group, activateGroup)//匹配group
&& !namesSet.contains(name)//匹配扩展名
&& !namesSet.contains(REMOVE_VALUE_PREFIX + name)//如果包含"-"表示不激活该扩展实现
&& isActive(cachedActivateValues.get(name), url)) {//检测URL中是否出现了指定的Key
//getExtensionClass()根据扩展名name去获取每个name对应的ExtensionClass扩展实现类
//getExtension()根据扩展名name去获取一个extension扩展实现类实例
//所以,凡是打了@Activate注解的实现类,都会在这里被加载和初始化
activateExtensionsMap.put(getExtensionClass(name), getExtension(name));//加载扩展实现
}
});
}
if (namesSet.contains(DEFAULT_KEY)) {
ArrayList<T> extensionsResult = new ArrayList<>(activateExtensionsMap.size() + names.size());
for (String name : names) {
//通过"-"开头的配置明确指定不激活的扩展实现,直接就忽略了
if (name.startsWith(REMOVE_VALUE_PREFIX) || namesSet.contains(REMOVE_VALUE_PREFIX + name)) {
continue;
}
if (DEFAULT_KEY.equals(name)) {
extensionsResult.addAll(activateExtensionsMap.values());
continue;
}
if (containsExtension(name)) {
extensionsResult.add(getExtension(name));
}
}
return extensionsResult;
} else {
// add extensions, will be sorted by its order
for (String name : names) {
if (name.startsWith(REMOVE_VALUE_PREFIX) || namesSet.contains(REMOVE_VALUE_PREFIX + name)) {
continue;
}
if (DEFAULT_KEY.equals(name)) {
continue;
}
if (containsExtension(name)) {
activateExtensionsMap.put(getExtensionClass(name), getExtension(name));
}
}
return new ArrayList<>(activateExtensionsMap.values());
}
}
...
}
SPI的自动激活机制的用处:某SPI扩展接口可能会有很多实现类,在Dubbo运行时,并非只能使用其中一个实现类,也可以使用多个实现类。而@Activate自动激活机制,便可以激活一个SPI扩展接口的很多实现类来一起使用。
像下面代码中的postProcessConfig()方法:最后会将获取到的ConfigPostProcessor的多个实现类进行遍历,然后让每个实现类都调用各自的方法执行处理。
csharp
public class ServiceConfig<T> extends ServiceConfigBase<T> {
...
protected void postProcessRefresh() {
super.postProcessRefresh();
//检查并更新各项配置
checkAndUpdateSubConfigs();
}
private void checkAndUpdateSubConfigs() {
...
//下面这行代码就利用了SPI机制,使用了Activate自动激活的功能:this.getExtensionLoader(ConfigInitializer.class).getActivateExtension(...)
List<ConfigInitializer> configInitializers = this.getExtensionLoader(ConfigInitializer.class)
.getActivateExtension(URL.valueOf("configInitializer://", getScopeModel()), (String[]) null);
...
postProcessConfig();
}
private void postProcessConfig() {
//SPI的自动激活机制的用处:
//某SPI扩展接口可能会有很多实现类,在Dubbo运行时,并非只能使用其中一个实现类,也可以使用多个实现类
//而@Activate自动激活机制,便可以激活一个SPI扩展接口的很多实现类
List<ConfigPostProcessor> configPostProcessors = this.getExtensionLoader(ConfigPostProcessor.class)
.getActivateExtension(URL.valueOf("configPostProcessor://", getScopeModel()), (String[]) null);
//将获取到的ConfigPostProcessor的多个实现类进行遍历,每个实现类都调用各自的postProcessServiceConfig()方法进行处理
configPostProcessors.forEach(component -> component.postProcessServiceConfig(this));
}
...
}
5.Dubbo服务启动的init源码流程
scss
-> ServiceConfig.export()
-> ServiceConfig.init()
-> getExtensionLoader(ServiceListener.class)
-> AbstractConfig.getExtensionLoader()
-> extensionLoader.getSupportedExtensionInstances()
-> ServiceConfig.initServiceMetadata()
public class ServiceConfig<T> extends ServiceConfigBase<T> {
...
public void export() {
...
//ensure start module, compatible with old api usage
//getScopeModel()返回的是一个ModuleModel
getScopeModel().getDeployer().start();
//2.执行服务实例的刷新操作,也就是ProviderConfig->MethodConfig->ArgumentConfig体系
if (!this.isRefreshed()) {
this.refresh();
}
//3.这里会执行服务实例的初始化的工作,metadata
//也就是会把metadata元数据给准备好,后续可以准备进行元数据上报
this.init();
...
//4.这里可以作为一个服务实例里的服务发布这个功能场景的入口
doExport();
}
public void init() {
//通过SPI机制获取ServiceListener扩展点的所有实现类实例,然后添加到ServiceConfig的serviceListeners字段里
if (this.initialized.compareAndSet(false, true)) {
//load ServiceListeners from extension
ExtensionLoader<ServiceListener> extensionLoader = this.getExtensionLoader(ServiceListener.class);
this.serviceListeners.addAll(extensionLoader.getSupportedExtensionInstances());
}
//初始化ServiceMetadata,也就是服务元数据
//这需要与前面设置的MetadataCenter元数据中心配合起来来看
//ServiceMetadata作为服务实例的元数据,会对服务实例做一些描述,比如版本号、实现类等
initServiceMetadata(provider);
serviceMetadata.setServiceType(getInterfaceClass());
serviceMetadata.setTarget(getRef());
serviceMetadata.generateServiceKey();
}
...
}
public abstract class AbstractConfig implements Serializable {
...
protected <T> ExtensionLoader<T> getExtensionLoader(Class<T> type) {
if (scopeModel == null) {
throw new IllegalStateException("scopeModel is not initialized");
}
return scopeModel.getExtensionLoader(type);
}
...
}
public class ExtensionLoader<T> {
...
public Set<T> getSupportedExtensionInstances() {
checkDestroyed();
List<T> instances = new LinkedList<>();
Set<String> supportedExtensions = getSupportedExtensions();
if (CollectionUtils.isNotEmpty(supportedExtensions)) {
for (String name : supportedExtensions) {
instances.add(getExtension(name));
}
}
// sort the Prioritized instances
instances.sort(Prioritized.COMPARATOR);
return new LinkedHashSet<>(instances);
}
...
}
6.Dubbo服务本地发布的源码细节
typescript
-> ServiceConfig.export()
-> ServiceConfig.doExport()
-> ServiceConfig.doExportUrls()
-> repository.registerService()
-> repository.registerProvider()
-> ServiceConfig.doExportUrlsFor1Protocol()
-> ServiceConfig.exportUrl()
-> ServiceConfig.exportLocal()
-> ServiceConfig.doExportUrl()
-> JavassistProxyFactory.getInvoker()
-> protocolSPI.export(invoker)
public class ServiceConfig<T> extends ServiceConfigBase<T> {
...
//服务本地发布
private void exportLocal(URL url) {
//创建新URL
URL local = URLBuilder.from(url)
.setProtocol(LOCAL_PROTOCOL)
.setHost(LOCALHOST_VALUE)
.setPort(0)
.build();
local = local.setScopeModel(getScopeModel()).setServiceModel(providerModel);
//本地发布
doExportUrl(local, false);
//exportLocal指的是发布到本地,也就是系统自己内部,即在JVM内部做一次export发布
//具体就是在JVM内部完成组件之间的一些交互关系和发布
logger.info("Export dubbo service " + interfaceClass.getName() + " to local registry url : " + local);
}
private void doExportUrl(URL url, boolean withMetaData) {
...
//下面这一行代码是为服务实现类的对象创建相应的Invoker,第三个参数中,会将服务URL作为export参数添加到RegistryURL中
//这里的PROXY_FACTORY是ProxyFactory接口的适配器,比如下面会调用JavassistProxyFactory.getInvoker()方法
Invoker<?> invoker = proxyFactory.getInvoker(ref, (Class) interfaceClass, url);
if (withMetaData) {
//DelegateProviderMetaDataInvoker是个装饰类,将当前ServiceConfig和Invoker关联起来而已,invoke()方法透传给底层Invoker对象
invoker = new DelegateProviderMetaDataInvoker(invoker, this);
}
//调用Protocol实现,进行发布,protocolSPI是Protocol接口的适配器
//本地发布时,使用的是InjvmProtocol+InjvmExporter
//进行远程发布时,使用了RegistryProtocol,它会对DubboProtocol进行包装和装饰
//RegistryProtocol会先执行,先去做服务注册的事情,接着再执行DubboProtocol,启动NettyServer作为网络服务器
Exporter<?> exporter = protocolSPI.export(invoker);
exporters.add(exporter);
...
}
...
}
public class JavassistProxyFactory extends AbstractProxyFactory {
public <T> Invoker<T> getInvoker(T proxy, Class<T> type, URL url) throws RpcException {
//下面会通过Wrapper创建一个包装类对象
//该对象是动态构建出来的,它属于Wrapper的一个子类,里面会拼接一个关键的方法invokeMethod(),拼接代码由Javassist动态生成
final Wrapper wrapper = Wrapper.getWrapper(proxy.getClass().getName().indexOf('$') < 0 ? proxy.getClass() : type);
//下面会创建一个实现了AbstractProxyInvoker的匿名内部类,其doInvoker()方法会直接委托给Wrapper对象的invokeMethod()方法
return new AbstractProxyInvoker<T>(proxy, type, url) {
@Override
protected Object doInvoke(T proxy, String methodName, Class<?>[] parameterTypes, Object[] arguments) throws Throwable {
//当AbstractProxyInvoker.invoke()方法被调用时,便会执行到这里
//这里会通过类似于jdk反射的技术,去调用本地实现类如DemoServiceImpl.sayHello
//这个wrapper类是由javassist技术动态生成的,已经对本地实现类进行包装
//这个动态生成的wrapper类,在这里会通过javassist技术自己特有的方法,在invokerMethod调用时会去执行本地实现类的目标方法
return wrapper.invokeMethod(proxy, methodName, parameterTypes, arguments);
}
};
}
...
}
7.Javassist技术动态生成类的源码细节
kotlin
-> JavassistProxyFactory.getInvoker()
-> Wrapper.getWrapper()
-> Wrapper.makeWrapper()
-> ClassGenerator.newInstance()
-> ClassGenerator.toClass()
public abstract class Wrapper {
...
public static Wrapper getWrapper(Class<?> c) {
...
return WRAPPER_MAP.computeIfAbsent(c, Wrapper::makeWrapper);
}
private static Wrapper makeWrapper(Class<?> c) {
...
//动态拼接wrapperClass的代码
ClassGenerator cc = ClassGenerator.newInstance(cl);
...
//最终生成的是一个Wrapper的子类,子类的代码全部是动态代码拼接的
Class<?> wc = cc.toClass(c);
}
...
}
public final class ClassGenerator {
...
public Class<?> toClass(Class<?> neighborClass, ClassLoader loader, ProtectionDomain pd) {
if (mCtc != null) {
mCtc.detach();
}
//在代理类继承父类的时候,会将该id作为后缀编号,防止代理类重名
long id = CLASS_NAME_COUNTER.getAndIncrement();
CtClass ctcs = mSuperClass == null ? null : mPool.get(mSuperClass);
//确定代理类的名称
if (mClassName == null) {
mClassName = (mSuperClass == null || javassist.Modifier.isPublic(ctcs.getModifiers()) ? ClassGenerator.class.getName() : mSuperClass + "$sc") + id;
}
//创建CtClass,用来生成代理类
mCtc = mPool.makeClass(mClassName);
//设置代理类的父类
if (mSuperClass != null) {
mCtc.setSuperclass(ctcs);
}
//设置代理类实现的接口,默认会添加DC这个接口
mCtc.addInterface(mPool.get(DC.class.getName())); // add dynamic class tag.
if (mInterfaces != null) {
for (String cl : mInterfaces) {
mCtc.addInterface(mPool.get(cl));
}
}
//设置代理类的字段
if (mFields != null) {
for (String code : mFields) {
mCtc.addField(CtField.make(code, mCtc));
}
}
//生成代理类的方法
if (mMethods != null) {
for (String code : mMethods) {
if (code.charAt(0) == ':') {
mCtc.addMethod(CtNewMethod.copy(getCtMethod(mCopyMethods.get(code.substring(1))), code.substring(1, code.indexOf('(')), mCtc, null));
} else {
mCtc.addMethod(CtNewMethod.make(code, mCtc));
}
}
}
//生成默认的构造方法
if (mDefaultConstructor) {
mCtc.addConstructor(CtNewConstructor.defaultConstructor(mCtc));
}
//生成构造方法
if (mConstructors != null) {
for (String code : mConstructors) {
if (code.charAt(0) == ':') {
mCtc.addConstructor(CtNewConstructor.copy(getCtConstructor(mCopyConstructors.get(code.substring(1))), mCtc, null));
} else {
String[] sn = mCtc.getSimpleName().split("\$+"); // inner class name include $.
mCtc.addConstructor(CtNewConstructor.make(code.replaceFirst(SIMPLE_NAME_TAG, sn[sn.length - 1]), mCtc));
}
}
}
//按照上述配置生成类,也就是将动态拼接得到的类代码字符串,使用Javassist来生成
try {
return mPool.toClass(mCtc, neighborClass, loader, pd);
} catch (Throwable t) {
if (!(t instanceof CannotCompileException)) {
return mPool.toClass(mCtc, loader, pd);
}
throw t;
}
}
...
}
8.Protocol SPI自适应机制的源码细节
首先ServiceConfig的protocolSPI会在postProcessAfterScopeModelChanged()方法中被赋值,其中会涉及到ExtensionLoader.getAdaptiveExtension()方法。
scss
-> this.getExtensionLoader(Protocol.class).getAdaptiveExtension()
-> ExtensionLoader.getAdaptiveExtension()
-> ExtensionLoader.createAdaptiveExtension()
-> ExtensionLoader.getAdaptiveExtensionClass()
-> ExtensionLoader.createAdaptiveExtensionClass()
-> ServiceConfig.doExportUrl()
public class ServiceConfig<T> extends ServiceConfigBase<T> {
...
@Override
protected void postProcessAfterScopeModelChanged(ScopeModel oldScopeModel, ScopeModel newScopeModel) {
super.postProcessAfterScopeModelChanged(oldScopeModel, newScopeModel);
protocolSPI = this.getExtensionLoader(Protocol.class).getAdaptiveExtension();
proxyFactory = this.getExtensionLoader(ProxyFactory.class).getAdaptiveExtension();
}
private void doExportUrl(URL url, boolean withMetaData) {
...
//下面这一行代码是为服务实现类的对象创建相应的Invoker,第三个参数中,会将服务URL作为export参数添加到RegistryURL中
//这里的PROXY_FACTORY是ProxyFactory接口的适配器,比如下面会调用JavassistProxyFactory.getInvoker()方法
Invoker<?> invoker = proxyFactory.getInvoker(ref, (Class) interfaceClass, url);
if (withMetaData) {
//DelegateProviderMetaDataInvoker是个装饰类,将当前ServiceConfig和Invoker关联起来而已,invoke()方法透传给底层Invoker对象
invoker = new DelegateProviderMetaDataInvoker(invoker, this);
}
//调用Protocol实现,进行发布,protocolSPI是Protocol接口的适配器
//本地发布时,使用的是InjvmProtocol+InjvmExporter
//进行远程发布时,使用了RegistryProtocol,它会对DubboProtocol进行包装和装饰
//RegistryProtocol会先执行,先去做服务注册的事情,接着再执行DubboProtocol,启动NettyServer作为网络服务器
Exporter<?> exporter = protocolSPI.export(invoker);
exporters.add(exporter);
...
}
...
}
public class ExtensionLoader<T> {
//缓存的一些Adaptive类型的扩展实现类的实例对象
//Adaptive是自适应的意思,即后续会根据扩展实现类的@Adaptive注解+URL参数,自动去筛选和判断到底用哪个实现类
private final Holder<Object> cachedAdaptiveInstance = new Holder<>();
...
//对于包含@Adaptive注解的SPI扩展类,如果它有多个实现类,那么就可以根据url里的一些参数直接匹配和定位对应的一个实现类
//createAdaptiveExtension()会动态生成出来一个类,但这个类不是一个直接给我们用的实现类
//生成出来的这一个类,核心要做的事情,就是根据url里提取出一些参数,动态去匹配真正的实现类
@SuppressWarnings("unchecked")
public T getAdaptiveExtension() {
checkDestroyed();
//检查cachedAdaptiveInstance字段中是否已缓存了适配器实例,如果已缓存,则直接返回该实例即可
Object instance = cachedAdaptiveInstance.get();
if (instance == null) {
if (createAdaptiveInstanceError != null) {
throw new IllegalStateException("Failed to create adaptive instance: " + createAdaptiveInstanceError.toString(), createAdaptiveInstanceError);
}
//cachedAdaptiveInstance是一个Holder,主要是用来对目标对象进行加锁的
synchronized (cachedAdaptiveInstance) {
instance = cachedAdaptiveInstance.get();
if (instance == null) {
try {
//动态生成一个类
instance = createAdaptiveExtension();
//将适配器实例缓存到cachedAdaptiveInstance字段,然后返回适配器实例
cachedAdaptiveInstance.set(instance);
} catch (Throwable t) {
createAdaptiveInstanceError = t;
throw new IllegalStateException("Failed to create adaptive instance: " + t.toString(), t);
}
}
}
}
return (T) instance;
}
private T createAdaptiveExtension() {
try {
//创建自适应扩展类对应的实例
T instance = (T) getAdaptiveExtensionClass().newInstance();
//下面会对该实例对象进行初始化前的处理
instance = postProcessBeforeInitialization(instance, null);
//调用injectExtension()方法进行自动装配,就能得到一个完整的适配器实例
injectExtension(instance);
//下面会对该实例对象进行初始化后的处理
instance = postProcessAfterInitialization(instance, null);
//如果扩展实现类实现了Lifecycle接口,在initExtension()方法中会调用initialize()方法进行初始化;
initExtension(instance);
return instance;
} catch (Exception e) {
throw new IllegalStateException("Can't create adaptive extension " + type + ", cause: " + e.getMessage(), e);
}
}
private Class<?> getAdaptiveExtensionClass() {
//调用getExtensionClasses()方法,其中就会触发loadClass()方法,完成cachedAdaptiveClass字段的填充
getExtensionClasses();
//如果存在@Adaptive注解修饰的扩展实现类,该类就是适配器类,通过newInstance()将其实例化即可
if (cachedAdaptiveClass != null) {
return cachedAdaptiveClass;
}
//如果不存在@Adaptive注解修饰的扩展实现类
//就需要通过createAdaptiveExtensionClass()方法扫描扩展接口中方法上的@Adaptive注解,动态生成适配器类,然后实例化
//所以光加载ExtensionClasses还不够,还需要创建adaptive自适应的扩展类实例
return cachedAdaptiveClass = createAdaptiveExtensionClass();
}
private Class<?> createAdaptiveExtensionClass() {
// Adaptive Classes' ClassLoader should be the same with Real SPI interface classes' ClassLoader
ClassLoader classLoader = type.getClassLoader();
if (NativeUtils.isNative()) {
return classLoader.loadClass(type.getName() + "$Adaptive");
}
//下面使用了AdaptiveClassCodeGenerator来做类代码的动态生成并进行获取,也就是说自适应扩展类的代码是动态生成的
String code = new AdaptiveClassCodeGenerator(type, cachedDefaultName).generate();
//自适应扩展类的代码经过动态生成后,还需要进行动态编译,编译成Class字节码对象
org.apache.dubbo.common.compiler.Compiler compiler = extensionDirector.getExtensionLoader(
org.apache.dubbo.common.compiler.Compiler.class).getAdaptiveExtension();
return compiler.compile(type, code, classLoader);
}
...
}
9.Protocol SPI进行本地发布的源码细节
csharp
-> ServiceConfig.exportLocal()
-> ServiceConfig.doExportUrl()
-> protocolSPI.export()
-> InjvmProtocol.export()
public class ServiceConfig<T> extends ServiceConfigBase<T> {
...
//服务本地发布
private void exportLocal(URL url) {
//创建新URL
URL local = URLBuilder.from(url)
.setProtocol(LOCAL_PROTOCOL)
.setHost(LOCALHOST_VALUE)
.setPort(0)
.build();
local = local.setScopeModel(getScopeModel()).setServiceModel(providerModel);
//本地发布
doExportUrl(local, false);
//exportLocal指的是发布到本地,也就是系统自己内部,即在JVM内部做一次export发布
//具体就是在JVM内部完成组件之间的一些交互关系和发布
logger.info("Export dubbo service " + interfaceClass.getName() + " to local registry url : " + local);
}
private void doExportUrl(URL url, boolean withMetaData) {
...
//下面这一行代码是为服务实现类的对象创建相应的Invoker,第三个参数中,会将服务URL作为export参数添加到RegistryURL中
//这里的PROXY_FACTORY是ProxyFactory接口的适配器,比如下面会调用JavassistProxyFactory.getInvoker()方法
Invoker<?> invoker = proxyFactory.getInvoker(ref, (Class) interfaceClass, url);
if (withMetaData) {
//DelegateProviderMetaDataInvoker是个装饰类,将当前ServiceConfig和Invoker关联起来而已,invoke()方法透传给底层Invoker对象
invoker = new DelegateProviderMetaDataInvoker(invoker, this);
}
//调用Protocol实现,进行发布,protocolSPI是Protocol接口的适配器
//本地发布时,使用的是InjvmProtocol+InjvmExporter
//进行远程发布时,使用了RegistryProtocol,它会对DubboProtocol进行包装和装饰
//RegistryProtocol会先执行,先去做服务注册的事情,接着再执行DubboProtocol,启动NettyServer作为网络服务器
Exporter<?> exporter = protocolSPI.export(invoker);
exporters.add(exporter);
...
}
...
}
public class InjvmProtocol extends AbstractProtocol {
...
public <T> Exporter<T> export(Invoker<T> invoker) throws RpcException {
//直接封装一个InjvmInvoker,可以用于进行本地的服务调用
return new InjvmExporter<T>(invoker, invoker.getUrl().getServiceKey(), exporterMap);
}
...
}
10.Dubbo服务远程发布的源码细节
scss
-> ServiceConfig.export()
-> ServiceConfig.doExport()
-> ServiceConfig.doExportUrls()
-> ServiceConfig.doExportUrlsFor1Protocol()
-> ServiceConfig.exportUrl()
-> ServiceConfig.exportLocal()
-> ServiceConfig.exportRemote()
-> ServiceConfig.doExportUrl()
-> JavassistProxyFactory.getInvoker()
-> protocolSPI.export(invoker)
-> RegistryProtocol.export()
public class ServiceConfig<T> extends ServiceConfigBase<T> {
...
//需要确保要对外暴露的服务可以对外提供访问
private URL exportRemote(URL url, List<URL> registryURLs) {
//如果当前配置了至少一个注册中心
if (CollectionUtils.isNotEmpty(registryURLs)) {
//URL里有很多的信息,比如协议、各种各样的参数、各种各样的信息,URL可以在后续代码运行时提供配置和信息
//接下来会向每个注册中心发布服务
for (URL registryURL : registryURLs) {
//registryURL.getProtocol()会获取协议
if (SERVICE_REGISTRY_PROTOCOL.equals(registryURL.getProtocol())) {
url = url.addParameterIfAbsent(SERVICE_NAME_MAPPING_KEY, "true");
}
//if protocol is only injvm ,not register
//injvm协议只在exportLocal()中有用,不会将服务发布到注册中心,所以这里忽略injvm协议
if (LOCAL_PROTOCOL.equalsIgnoreCase(url.getProtocol())) {
continue;
}
//设置服务URL的dynamic参数
url = url.addParameterIfAbsent(DYNAMIC_KEY, registryURL.getParameter(DYNAMIC_KEY));
//创建monitorUrl,并作为monitor参数添加到服务URL中
URL monitorUrl = ConfigValidationUtils.loadMonitor(this, registryURL);
if (monitorUrl != null) {
url = url.putAttribute(MONITOR_KEY, monitorUrl);
}
//For providers, this is used to enable custom proxy to generate invoker
//设置服务URL的proxy参数,即生成动态代理方式(jdk或是javassist),作为参数添加到RegistryURL中
String proxy = url.getParameter(PROXY_KEY);
if (StringUtils.isNotEmpty(proxy)) {
registryURL = registryURL.addParameter(PROXY_KEY, proxy);
}
...
doExportUrl(registryURL.putAttribute(EXPORT_KEY, url), true);
}
} else {
//不存在注册中心,仅发布服务,不会将服务信息发布到注册中心
//Consumer没法在注册中心找到该服务的信息,但是可以直连,具体的发布过程与上面的过程类似
doExportUrl(url, true);
}
return url;
}
private void doExportUrl(URL url, boolean withMetaData) {
...
//下面这一行代码是为服务实现类的对象创建相应的Invoker,第三个参数中,会将服务URL作为export参数添加到RegistryURL中
//这里的PROXY_FACTORY是ProxyFactory接口的适配器,比如下面会调用JavassistProxyFactory.getInvoker()方法
Invoker<?> invoker = proxyFactory.getInvoker(ref, (Class) interfaceClass, url);
if (withMetaData) {
//DelegateProviderMetaDataInvoker是个装饰类,将当前ServiceConfig和Invoker关联起来而已,invoke()方法透传给底层Invoker对象
invoker = new DelegateProviderMetaDataInvoker(invoker, this);
}
//调用Protocol实现,进行发布,protocolSPI是Protocol接口的适配器
//本地发布时,使用的是InjvmProtocol+InjvmExporter
//进行远程发布时,使用了RegistryProtocol,它会对DubboProtocol进行包装和装饰
//RegistryProtocol会先执行,先去做服务注册的事情,接着再执行DubboProtocol,启动NettyServer作为网络服务器
Exporter<?> exporter = protocolSPI.export(invoker);
exporters.add(exporter);
...
}
public class JavassistProxyFactory extends AbstractProxyFactory {
...
public <T> Invoker<T> getInvoker(T proxy, Class<T> type, URL url) throws RpcException {
try {
//下面会通过Wrapper创建一个包装类对象
//该对象是动态构建出来的,它属于Wrapper的一个子类,里面会拼接一个关键的方法invokeMethod(),拼接代码由Javassist动态生成
final Wrapper wrapper = Wrapper.getWrapper(proxy.getClass().getName().indexOf('$') < 0 ? proxy.getClass() : type);
//下面会创建一个实现了AbstractProxyInvoker的匿名内部类,其doInvoker()方法会直接委托给Wrapper对象的invokeMethod()方法
return new AbstractProxyInvoker<T>(proxy, type, url) {
@Override
protected Object doInvoke(T proxy, String methodName, Class<?>[] parameterTypes, Object[] arguments) throws Throwable {
//当AbstractProxyInvoker.invoke()方法被调用时,便会执行到这里
//这里会通过类似于JDK反射的技术,去调用本地实现类如DemoServiceImpl.sayHello
//这个wrapper类是由javassist技术动态生成的,已经对本地实现类进行包装
//这个动态生成的wrapper类,在这里会通过javassist技术自己特有的方法,在invokerMethod调用时会去执行本地实现类的目标方法
return wrapper.invokeMethod(proxy, methodName, parameterTypes, arguments);
}
};
} catch (Throwable fromJavassist) {
//try fall back to JDK proxy factory
try {
//使用JDK的反射去调用本地,这时没有动态生成的Wrapper类了
Invoker<T> invoker = jdkProxyFactory.getInvoker(proxy, type, url);
return invoker;
} catch (Throwable fromJdk) {
throw new RpcException(fromJavassist);
}
}
}
...
}
...
}
11.RegistryProtocol远程发布的源码细节
RegistryProtocol远程发布的核心逻辑其实涉及两大Protocol:一是DubboProtocol建立网络服务进行监听,二是RegistryProtocol向注册中心注册。
scss
-> RegistryProtocol.export()
-> RegistryProtocol.doLocalExport()
-> RegistryProtocol.getRegistry()
-> RegistryProtocol.register()
public class RegistryProtocol implements Protocol, ScopeModelAware {
...
public <T> Exporter<T> export(final Invoker<T> originInvoker) throws RpcException {
//将"registry://"协议(Remote URL)转换成"zookeeper://"协议(Registry URL)
URL registryUrl = getRegistryUrl(originInvoker);
//获取export参数,其中存储了一个"dubbo://"协议的Provider URL
URL providerUrl = getProviderUrl(originInvoker);
final URL overrideSubscribeUrl = getSubscribedOverrideUrl(providerUrl);
final OverrideListener overrideSubscribeListener = new OverrideListener(overrideSubscribeUrl, originInvoker);
Map<URL, NotifyListener> overrideListeners = getProviderConfigurationListener(providerUrl).getOverrideListeners();
overrideListeners.put(registryUrl, overrideSubscribeListener);
providerUrl = overrideUrlWithConfig(providerUrl, overrideSubscribeListener);
//export invoker
//1.下面进行导出服务,底层会通过会执行DubboProtocol.export()方法,启动对应的Server
//也就是会涉及到对另外一个protocol组件的调用,远程发布服务时其实就是执行DubboProtocol的export方法
final ExporterChangeableWrapper<T> exporter = doLocalExport(originInvoker, providerUrl);
//2.url to registry 完成服务注册的事情
//下面会根据RegistryURL获取对应的注册中心Registry对象,其中会依赖RegistryFactory
//远程发布时,下面的registry其实是一个ListenerRegistryWrapper装饰器,装饰着使用了ZookeeperServiceDiscovery的ServiceDiscoveryRegistry
//在基于注册中心的url地址去构建对应的注册中心组件时,默认是基于zk的
//而构建一个基于zk的注册中心组件,同时跟zk完成连接的建立,则由curator5框架来实现
final Registry registry = getRegistry(registryUrl);
//获取将要发布到注册中心上的Provider URL,其中会删除一些多余的参数信息
final URL registeredProviderUrl = getUrlToRegistry(providerUrl, registryUrl);
//根据register参数值决定是否注册服务
boolean register = providerUrl.getParameter(REGISTER_KEY, true) && registryUrl.getParameter(REGISTER_KEY, true);
if (register) {
//调用Registry.register()方法将registeredProviderUrl发布到注册中心
register(registry, registeredProviderUrl);
}
//将Provider相关信息记录到的ProviderModel中
registerStatedUrl(registryUrl, registeredProviderUrl, register);
exporter.setRegisterUrl(registeredProviderUrl);
exporter.setSubscribeUrl(overrideSubscribeUrl);
if (!registry.isServiceDiscovery()) {
//向注册中心进行订阅override数据,主要是监听该服务的configurators节点
registry.subscribe(overrideSubscribeUrl, overrideSubscribeListener);
}
//触发RegistryProtocolListener监听器
notifyExport(exporter);
return new DestroyableExporter<>(exporter);
}
private <T> ExporterChangeableWrapper<T> doLocalExport(final Invoker<T> originInvoker, URL providerUrl) {
String key = getCacheKey(originInvoker);
return (ExporterChangeableWrapper<T>) bounds.computeIfAbsent(key, s -> {
Invoker<?> invokerDelegate = new InvokerDelegate<>(originInvoker, providerUrl);
//下面会调用DubboProtocol的export()方法
return new ExporterChangeableWrapper<>((Exporter<T>) protocol.export(invokerDelegate), originInvoker);
});
}
protected Registry getRegistry(final URL registryUrl) {
//通过SPI自适应机制,去拿到对应的extension实例
RegistryFactory registryFactory = ScopeModelUtil.getExtensionLoader(RegistryFactory.class, registryUrl.getScopeModel()).getAdaptiveExtension();
return registryFactory.getRegistry(registryUrl);
}
private void register(Registry registry, URL registeredProviderUrl) {
//下面会调用ListenerRegistryWrapper.register()方法
registry.register(registeredProviderUrl);
}
...
}
12.基于ZooKeeper的注册中心的实现细节
(1)Provider端使用ServiceDiscoveryFactory建立与zk的连接
(2)Consumer端使用ZookeeperRegistry建立与zk的连接
在RegistryProtocol的getRegistry()过程中,如果发现还没有注册中心实例,就会去进行创建。不过从Debug可以知道不是通过ZookeeperRegistry去构建,而是通过ServiceDiscoveryRegistry去构建,然后通过ZookeeperServiceDiscoveryFactory的createDiscovery()方法去建立与zk的连接。
(1)Provider端使用ServiceDiscoveryFactory建立与zk的连接
scss
-> RegistryProtocol.getRegistry()
-> registryFactory.getRegistry(registryUrl)
-> RegistryFactory$Adaptive.getRegistry()
-> RegistryFactoryWrapper.getRegistry()
-> AbstractRegistryFactory.getRegistry()
-> ServiceDiscoveryRegistryFactory.createRegistry()
-> new ServiceDiscoveryRegistry()
-> ServiceDiscoveryRegistry.createServiceDiscovery()
-> ServiceDiscoveryRegistry.getServiceDiscovery()
-> AbstractServiceDiscoveryFactory.getServiceDiscovery()
-> AbstractServiceDiscoveryFactory.createDiscovery()
-> ZookeeperServiceDiscoveryFactory.createDiscovery()
-> new ZookeeperServiceDiscovery()
public class RegistryProtocol implements Protocol, ScopeModelAware {
...
protected Registry getRegistry(final URL registryUrl) {
//通过SPI机制,去自适应拿到对应的extension实例
RegistryFactory registryFactory = ScopeModelUtil.getExtensionLoader(RegistryFactory.class, registryUrl.getScopeModel()).getAdaptiveExtension();
return registryFactory.getRegistry(registryUrl);
}
...
}
public class RegistryFactoryWrapper implements RegistryFactory {
...
public Registry getRegistry(URL url) {
//下面会调用AbstractRegistryFactory.getRegistry()
return new ListenerRegistryWrapper(registryFactory.getRegistry(url),
Collections.unmodifiableList(url.getOrDefaultApplicationModel().getExtensionLoader(RegistryServiceListener.class).getActivateExtension(url, "registry.listeners")));
}
...
}
public abstract class AbstractRegistryFactory implements RegistryFactory, ScopeModelAware {
...
public Registry getRegistry(URL url) {
...
registry = createRegistry(url);
...
return registry;
}
protected abstract Registry createRegistry(URL url);
...
}
public class ServiceDiscoveryRegistryFactory extends AbstractRegistryFactory {
@Override
protected Registry createRegistry(URL url) {
if (UrlUtils.hasServiceDiscoveryRegistryProtocol(url)) {
String protocol = url.getParameter(REGISTRY_KEY, DEFAULT_REGISTRY);
url = url.setProtocol(protocol).removeParameter(REGISTRY_KEY);
}
return new ServiceDiscoveryRegistry(url, applicationModel);
}
}
public class ServiceDiscoveryRegistry extends FailbackRegistry {
...
public ServiceDiscoveryRegistry(URL registryURL, ApplicationModel applicationModel) {
super(registryURL);
this.serviceDiscovery = createServiceDiscovery(registryURL);
this.serviceNameMapping = (AbstractServiceNameMapping) ServiceNameMapping.getDefaultExtension(registryURL.getScopeModel());
super.applicationModel = applicationModel;
}
protected ServiceDiscovery createServiceDiscovery(URL registryURL) {
//根据registryURL获取对应的ServiceDiscovery实现
return getServiceDiscovery(registryURL.addParameter(INTERFACE_KEY, ServiceDiscovery.class.getName())
.removeParameter(REGISTRY_TYPE_KEY));
}
private ServiceDiscovery getServiceDiscovery(URL registryURL) {
ServiceDiscoveryFactory factory = getExtension(registryURL);
return factory.getServiceDiscovery(registryURL);
}
...
}
public abstract class AbstractServiceDiscoveryFactory implements ServiceDiscoveryFactory, ScopeModelAware {
...
public ServiceDiscovery getServiceDiscovery(URL registryURL) {
String key = registryURL.toServiceStringWithoutResolving();
return discoveries.computeIfAbsent(key, k -> createDiscovery(registryURL));
}
protected abstract ServiceDiscovery createDiscovery(URL registryURL);
}
public class ZookeeperServiceDiscoveryFactory extends AbstractServiceDiscoveryFactory {
@Override
protected ServiceDiscovery createDiscovery(URL registryURL) {
return new ZookeeperServiceDiscovery(applicationModel, registryURL);
}
}
public class ZookeeperServiceDiscovery extends AbstractServiceDiscovery {
...
public ZookeeperServiceDiscovery(ApplicationModel applicationModel, URL registryURL) {
super(applicationModel, registryURL);
try {
//先去构建和zk连接的一个客户端
this.curatorFramework = buildCuratorFramework(registryURL, this);
this.rootPath = getRootPath(registryURL);
this.serviceDiscovery = buildServiceDiscovery(curatorFramework, rootPath);
this.serviceDiscovery.start();
} catch (Exception e) {
throw new IllegalStateException("Create zookeeper service discovery failed.", e);
}
}
...
}
(2)Consumer端使用ZookeeperRegistry建立与zk的连接
刚开始构建ZookeeperRegistry,其核心就是去连接zk,与zk建立连接。
java
-> ZookeeperRegistryFactory.createRegistry()
-> new ZookeeperRegistry()
-> zookeeperTransporter.connect(url)
-> AbstractZookeeperTransporter.connect()
-> createZookeeperClient(url)
-> Curator5ZookeeperTransporter.createZookeeperClient()
-> new Curator5ZookeeperClient()
public class RegistryProtocol implements Protocol, ScopeModelAware {
...
protected Registry getRegistry(final URL registryUrl) {
//通过SPI机制,去自适应拿到对应的extension实例
RegistryFactory registryFactory = ScopeModelUtil.getExtensionLoader(RegistryFactory.class, registryUrl.getScopeModel()).getAdaptiveExtension();
return registryFactory.getRegistry(registryUrl);
}
...
}
public abstract class AbstractRegistryFactory implements RegistryFactory, ScopeModelAware {
...
public Registry getRegistry(URL url) {
...
registry = createRegistry(url);
...
return registry;
}
protected abstract Registry createRegistry(URL url);
...
}
public class ZookeeperRegistryFactory extends AbstractRegistryFactory {
//跟zk之间的网络通信的组件
private ZookeeperTransporter zookeeperTransporter;
public ZookeeperRegistryFactory(ApplicationModel applicationModel) {
this.applicationModel = applicationModel;
//通过SPI机制来进行获取
this.zookeeperTransporter = ZookeeperTransporter.getExtension(applicationModel);
}
public Registry createRegistry(URL url) {
return new ZookeeperRegistry(url, zookeeperTransporter);
}
}
// ZookeeperRegistry
// 基于zookeeper的注册中心组件
// dubbo注册中心的三级类体系结构设计:ZK/Nacos/Redis具体注册中心技术 -> Cacheable缓存层 -> Failback故障重试层
// 通过父类体系的设计,dubbo会把cache和failback两套复杂机制,提取到父类里去,而不是一个父类,是两个父类
// 这样就可以把不同的机制模块进行拆分,cache和failback也就各自会有一套机制模块
// ZooKeeperRegistry、NacosRegistry、KubernetesRegistry、DnsRegistry、ConsulRegistry这些基于具体技术实现的注册中心,
// 它们都可以继承相同的一套cache缓存和failback故障重试的机制,只要继承父类就可以了
// 注册中心的服务发现和订阅中类体系结构一共是5层:tech层、cacheable层、failback层、abstract层、interface层
public class ZookeeperRegistry extends CacheableFailbackRegistry {
...
//刚开始构建ZookeeperRegistry,其核心就是去连接zk,与zk建立连接
public ZookeeperRegistry(URL url, ZookeeperTransporter zookeeperTransporter) {
//传入的url是比如就是zk的连接地址zookeeper://localhost:2181/,首先根据该url执行父类的构造函数
super(url);
String group = url.getGroup(DEFAULT_ROOT);
if (!group.startsWith(PATH_SEPARATOR)) {
group = PATH_SEPARATOR + group;
}
this.root = group;
//基于zk的API去构建与zk之间的连接
this.zkClient = zookeeperTransporter.connect(url);
this.zkClient.addStateListener((state) -> {
if (state == StateListener.RECONNECTED) {
//连接突然断开后,很快就进行了重新连接的操作,reconnected
logger.warn("...");
//一旦重新连接后,就会尝试重新拉取之前订阅过的provider服务实例的最新集群地址
//在本机和zk之间的短暂的连接断开时,恰好zk端的provider服务实例地址有了变化,但当时网络连接短暂断开,导致没有办法及时反向推送回本机
//所以本机作为客户端,如果有短暂断开再重连的情况,必须去重新拉取一下最新的地址
//在这种情况下,是否有必要去执行本机consumer节点的重新注册呢?provider节点是否有必要在这里进行重新注册呢?其实是没有必要的
//因为如果之前去进行注册时,注册过程创建的就是一个zk临时节点,所以如果仅仅是网络闪断,zk是不会删除创建的临时节点的
//而之前发起的subscribe订阅请求,也因为仅仅是临时的网络断开,所以zk也是不会删除该订阅和监听的
ZookeeperRegistry.this.fetchLatestAddresses();
} else if (state == StateListener.NEW_SESSION_CREATED) {
//new_session_created新会话创建,经历了session断开过程,需要重新进行注册和订阅的监听
logger.warn("...");
ZookeeperRegistry.this.recover();
} else if (state == StateListener.SESSION_LOST) {
//连接断开的时间超过了一定的阈值,超出了sessionExpire过期的时间
//会话一旦过期,zk服务端就会把客户端之前注册时创建的临时节点删除,同时其施加的订阅监听也会被删除
//此时客户端就会收到一个状态变更,session_lost,表示断开时间太长了
logger.warn("...");
} else if (state == StateListener.SUSPENDED) {
} else if (state == StateListener.CONNECTED) {
}
});
}
...
}
public abstract class AbstractZookeeperTransporter implements ZookeeperTransporter {
...
public ZookeeperClient connect(URL url) {
...
//构建ZookeeperClient
zookeeperClient = createZookeeperClient(url);
...
return zookeeperClient;
}
protected abstract ZookeeperClient createZookeeperClient(URL url);
...
}
public class Curator5ZookeeperTransporter extends AbstractZookeeperTransporter {
@Override
public ZookeeperClient createZookeeperClient(URL url) {
//创建CuratorZookeeperClient实例
return new Curator5ZookeeperClient(url);
}
}
public class Curator5ZookeeperClient extends AbstractZookeeperClient<Curator5ZookeeperClient.NodeCacheListenerImpl, Curator5ZookeeperClient.CuratorWatcherImpl> {
...
public Curator5ZookeeperClient(URL url) {
super(url);
try {
//连接超时时间
int timeout = url.getParameter(TIMEOUT_KEY, DEFAULT_CONNECTION_TIMEOUT_MS);
//session过期时间
int sessionExpireMs = url.getParameter(SESSION_KEY, DEFAULT_SESSION_TIMEOUT_MS);
//基于curator框架去构建zk client,curator框架是对zk原生client做了一层包装,正如Redisson和Jedis封装了redis一样,提供了大量高阶功能
CuratorFrameworkFactory.Builder builder = CuratorFrameworkFactory.builder()
//zk地址(包括备用地址)
.connectString(url.getBackupAddress())
//重试参数
.retryPolicy(new RetryNTimes(1, 1000))
//超时时间
.connectionTimeoutMs(timeout)
//session过期时间
.sessionTimeoutMs(sessionExpireMs);
String userInformation = url.getUserInformation();
if (userInformation != null && userInformation.length() > 0) {
builder = builder.authorization("digest", userInformation.getBytes());
builder.aclProvider(new ACLProvider() {
@Override
public List<ACL> getDefaultAcl() {
return ZooDefs.Ids.CREATOR_ALL_ACL;
}
@Override
public List<ACL> getAclForPath(String path) {
return ZooDefs.Ids.CREATOR_ALL_ACL;
}
});
}
client = builder.build();
//添加连接状态的监听
client.getConnectionStateListenable().addListener(new CuratorConnectionStateListener(url));
client.start();
//阻塞等待直到连接Zookeeper集群成功,超时时间为5秒,5秒过后还没连接上则抛异常
boolean connected = client.blockUntilConnected(timeout, TimeUnit.MILLISECONDS);
} catch (Exception e) {
throw new IllegalStateException(e.getMessage(), e);
}
}
...
}
13.DubboProtocol发布过程的源码细节
scss
-> RegistryProtocol.export()
-> RegistryProtocol.doLocalExport()
-> Protocol$Adaptive.export()
-> ProtocolSerializationWrapper.export()
-> ProtocolFilterWrapper.export()
-> ProtocolListenerWrapper.export()
-> DubboProtocol.export()
-> DubboProtocol.openServer()
-> DubboProtocol.createServer()
-> Exchangers.bind()
-> Exchangers.getExchanger()
-> HeaderExchanger.bind()
-> DubboProtocol.optimizeSerialization()
public class RegistryProtocol implements Protocol, ScopeModelAware {
...
public <T> Exporter<T> export(final Invoker<T> originInvoker) throws RpcException {
...
//1.下面进行导出服务,底层会通过会执行DubboProtocol.export()方法,启动对应的Server
//也就是会涉及到对另外一个protocol组件的调用,远程发布服务时其实就是执行DubboProtocol的export方法
final ExporterChangeableWrapper<T> exporter = doLocalExport(originInvoker, providerUrl);
...
}
private <T> ExporterChangeableWrapper<T> doLocalExport(final Invoker<T> originInvoker, URL providerUrl) {
String key = getCacheKey(originInvoker);
return (ExporterChangeableWrapper<T>) bounds.computeIfAbsent(key, s -> {
Invoker<?> invokerDelegate = new InvokerDelegate<>(originInvoker, providerUrl);
//下面会调用DubboProtocol的export()方法
return new ExporterChangeableWrapper<>((Exporter<T>) protocol.export(invokerDelegate), originInvoker);
});
}
...
}
@Activate
public class ProtocolSerializationWrapper implements Protocol {
private Protocol protocol;
public <T> Exporter<T> export(Invoker<T> invoker) throws RpcException {
getFrameworkModel(invoker.getUrl().getScopeModel()).getServiceRepository().registerProviderUrl(invoker.getUrl());
//下面会调用ProtocolFilterWrapper.export()方法
return protocol.export(invoker);
}
...
}
@Activate(order = 100)
public class ProtocolFilterWrapper implements Protocol {
private final Protocol protocol;
public <T> Exporter<T> export(Invoker<T> invoker) throws RpcException {
if (UrlUtils.isRegistry(invoker.getUrl())) {
return protocol.export(invoker);
}
FilterChainBuilder builder = getFilterChainBuilder(invoker.getUrl());
//下面会调用ProtocolListenerWrapper.export()方法
return protocol.export(builder.buildInvokerChain(invoker, SERVICE_FILTER_KEY, CommonConstants.PROVIDER));
}
...
}
@Activate(order = 200)
public class ProtocolListenerWrapper implements Protocol {
private final Protocol protocol;
public <T> Exporter<T> export(Invoker<T> invoker) throws RpcException {
if (UrlUtils.isRegistry(invoker.getUrl())) {
return protocol.export(invoker);
}
//下面会调用DubboProtocol.export()
return new ListenerExporterWrapper<T>(protocol.export(invoker),
Collections.unmodifiableList(ScopeModelUtil.getExtensionLoader(ExporterListener.class, invoker.getUrl().getScopeModel()).getActivateExtension(invoker.getUrl(), EXPORTER_LISTENER_KEY)));
}
...
}
// dubbo protocol support.
// 负责把Dubbo服务对外进行网络发布
public class DubboProtocol extends AbstractProtocol {
...
public <T> Exporter<T> export(Invoker<T> invoker) throws RpcException {
checkDestroyed();
URL url = invoker.getUrl();
//创建ServiceKey
String key = serviceKey(url);
//exporter组件代表了指定的invoker被发布出去了
//下面代码会将上层传入的Invoker对象封装成DubboExporter对象,然后记录到exporterMap集合中
DubboExporter<T> exporter = new DubboExporter<T>(invoker, key, exporterMap);
...
//启动ProtocolServer,这个就是打开对外的网络服务器,可以对外提供网络请求处理
openServer(url);
//序列化的优化处理
optimizeSerialization(url);
return exporter;
}
private void openServer(URL url) {
checkDestroyed();
//find server.
//获取host:port这个地址
String key = url.getAddress();
//client can export a service which only for server to invoke
boolean isServer = url.getParameter(IS_SERVER_KEY, true);
if (isServer) {//只有Server端才能启动Server对象
//serverMap是网络服务器缓存,其中key就是host:port,value就是ProtocolServer,serverMap位于AbstractProtocol中
ProtocolServer server = serverMap.get(key);
if (server == null) {//无ProtocolServer监听该地址
synchronized (this) {//DoubleCheck,防止并发问题
server = serverMap.get(key);
if (server == null) {
//调用createServer()方法创建ProtocolServer对象
serverMap.put(key, createServer(url));
return;
}
}
}
//server supports reset, use together with override
server.reset(url);
}
}
private ProtocolServer createServer(URL url) {
url = URLBuilder.from(url)
//send readonly event when server closes, it's enabled by default
//ReadOnly请求是否阻塞等待
.addParameterIfAbsent(CHANNEL_READONLYEVENT_SENT_KEY, Boolean.TRUE.toString())
//enable heartbeat by default
//心跳间隔
.addParameterIfAbsent(HEARTBEAT_KEY, String.valueOf(DEFAULT_HEARTBEAT))
.addParameter(CODEC_KEY, DubboCodec.NAME)
.build();
//SERVER_KEY参数检查
String transporter = url.getParameter(SERVER_KEY, DEFAULT_REMOTING_SERVER);
if (StringUtils.isNotEmpty(transporter) && !url.getOrDefaultFrameworkModel().getExtensionLoader(Transporter.class).hasExtension(transporter)) {
throw new RpcException("Unsupported server type: " + transporter + ", url: " + url);
}
ExchangeServer server;
try {
//通过Exchangers门面类,创建ExchangeServer对象
server = Exchangers.bind(url, requestHandler);
} catch (RemotingException e) {
throw new RpcException("Fail to start server(url: " + url + ") " + e.getMessage(), e);
}
//检测CLIENT_KEY参数指定的Transporter扩展实现是否合法
transporter = url.getParameter(CLIENT_KEY);
if (StringUtils.isNotEmpty(transporter) && !url.getOrDefaultFrameworkModel().getExtensionLoader(Transporter.class).hasExtension(transporter)) {
throw new RpcException("Unsupported client type: " + transporter);
}
//将ExchangeServer封装成DubboProtocolServer返回
DubboProtocolServer protocolServer = new DubboProtocolServer(server);
loadServerProperties(protocolServer);
return protocolServer;
}
...
}
public class Exchangers {
...
public static ExchangeServer bind(URL url, ExchangeHandler handler) throws RemotingException {
...
url = url.addParameterIfAbsent(Constants.CODEC_KEY, "exchange");
//先获取到一个Exchanger组件,再用这个Exchanger组件去进行bind,拿到对应的ExchangeServer
//getExchanger()会通过SPI机制,获取到HeaderExchanger
return getExchanger(url).bind(url, handler);
}
public static Exchanger getExchanger(URL url) {
String type = url.getParameter(Constants.EXCHANGER_KEY, Constants.DEFAULT_EXCHANGER);
//根据SPI机制,通过model组件体系去拿到对应的SPI扩展实现类实例
return url.getOrDefaultFrameworkModel().getExtensionLoader(Exchanger.class).getExtension(type);
}
...
}
public class HeaderExchanger implements Exchanger {
...
@Override
public ExchangeServer bind(URL url, ExchangeHandler handler) throws RemotingException {
//Exchanger这一层的代码可以理解为是位于上层的代码,它会把一些RpcInvocation调用转为请求/响应的模型,以及进行同步转异步的处理;
//从Exchanger这层开始,便进入网络模型的范围,引入了请求的概念,并最终会通过底层的网络框架把请求发送出去;
//因此需要获取到网络框架底层的Server和Client,并将它们封装到Exchanger组件如HeaderExchangeServer/HeaderExchangeClient中;
//为什么需要不同的Transporter?
//在Exchanger这一层里其实是可以使用不同的网络技术的,比如Netty、Mina这些网络通信框架;
//由于Netty、Mina这些不同的框架,它们的用法和API都是不同的,所以在Exchanger这一层,不能把Netty、Mina的API直接提供过来;
//为了把这些不同的网络框架技术进行统一的封装,需要做一层Transporter,由Transporter来实现抽象统一的底层网络框架的使用标准;
//所以Exchanger这一层是基于Transporter这一层提供的标准模型来实现请求/响应处理;
//下面的Transporters.bind()会返回一个NettyServer
return new HeaderExchangeServer(Transporters.bind(url, new DecodeHandler(new HeaderExchangeHandler(handler))));
}
...
}
14.结合Exchange实例梳理SPI自适应机制原理
java
public class Exchangers {
...
public static Exchanger getExchanger(URL url) {
String type = url.getParameter(Constants.EXCHANGER_KEY, Constants.DEFAULT_EXCHANGER);
//根据SPI机制,通过model组件体系去拿到对应的SPI扩展实现类实例
return url.getOrDefaultFrameworkModel().getExtensionLoader(Exchanger.class).getExtension(type);
}
...
}
@SPI(value = HeaderExchanger.NAME, scope = ExtensionScope.FRAMEWORK)
public interface Exchanger {
//为什么@Adaptive注解是加在方法上面
//根据自适应获取SPI extension实例的方法getExtension()代码可知,如果Exchanger接口里的方法加了@Adaptive注解
//那么针对Exchanger创建代理类时,它里面的方法代码都是动态拼接出来的,都是根据url里具体的参数去获取到指定的一个值,
//然后根据这个值去动态获取要用的实现类,找到对应的一个实现类后,再通过调用真正的实现类的extension实例来执行对应的bind方法
@Adaptive({Constants.EXCHANGER_KEY})
ExchangeServer bind(URL url, ExchangeHandler handler) throws RemotingException;
@Adaptive({Constants.EXCHANGER_KEY})
ExchangeClient connect(URL url, ExchangeHandler handler) throws RemotingException;
}
不过最直观的例子应该是:Transporters.getTransporter()方法中获取自适应Transporter类:
scss
public class Transporters {
...
public static RemotingServer bind(URL url, ChannelHandler... handlers) throws RemotingException {
...
ChannelHandler handler;
if (handlers.length == 1) {
handler = handlers[0];
} else {
handler = new ChannelHandlerDispatcher(handlers);
}
return getTransporter(url).bind(url, handler);
}
public static Transporter getTransporter(URL url) {
//下面使用了getAdaptiveExtension()自适应机制,针对接口动态生成代码然后创建代理类,
//代理类的方法,会根据url的参数动态提取对应的实现类的name名称,以及获取真正的需要使用的实现类
//有了真正的实现类后,就可以去调用实现类的extension实例的方法了
//比如下面会获取到一个NettyTransporter实例
return url.getOrDefaultFrameworkModel().getExtensionLoader(Transporter.class).getAdaptiveExtension();
}
...
}
@SPI(value = "netty", scope = ExtensionScope.FRAMEWORK)
public interface Transporter {
//Bind a server.
@Adaptive({Constants.SERVER_KEY, Constants.TRANSPORTER_KEY})
RemotingServer bind(URL url, ChannelHandler handler) throws RemotingException;
//Connect to a server.
@Adaptive({Constants.CLIENT_KEY, Constants.TRANSPORTER_KEY})
Client connect(URL url, ChannelHandler handler) throws RemotingException;
}
在运行过程中,getExtensionLoader(Transporter.class).getAdaptiveExtension()动态拼接生成的代理类代码如下:可以看到对比Transporter接口的其中一个实现类NettyTransporter,它们的方法区别在于动态拼接生成的多了URL判断。
java
package org.apache.dubbo.remoting;
import org.apache.dubbo.rpc.model.ScopeModel;
import org.apache.dubbo.rpc.model.ScopeModelUtil;
public class Transporter$Adaptive implements org.apache.dubbo.remoting.Transporter {
public org.apache.dubbo.remoting.Client connect(org.apache.dubbo.common.URL arg0, org.apache.dubbo.remoting.ChannelHandler arg1) throws org.apache.dubbo.remoting.RemotingException {
if (arg0 == null) throw new IllegalArgumentException("url == null");
org.apache.dubbo.common.URL url = arg0;
String extName = url.getParameter("client", url.getParameter("transporter", "netty"));
if(extName == null) throw new IllegalStateException("Failed to get extension (org.apache.dubbo.remoting.Transporter) name from url (" + url.toString() + ") use keys([client, transporter])");
ScopeModel scopeModel = ScopeModelUtil.getOrDefault(url.getScopeModel(), org.apache.dubbo.remoting.Transporter.class);
org.apache.dubbo.remoting.Transporter extension = (org.apache.dubbo.remoting.Transporter)scopeModel.getExtensionLoader(org.apache.dubbo.remoting.Transporter.class).getExtension(extName);
return extension.connect(arg0, arg1);
}
public org.apache.dubbo.remoting.RemotingServer bind(org.apache.dubbo.common.URL arg0, org.apache.dubbo.remoting.ChannelHandler arg1) throws org.apache.dubbo.remoting.RemotingException {
if (arg0 == null) throw new IllegalArgumentException("url == null");
org.apache.dubbo.common.URL url = arg0;
String extName = url.getParameter("server", url.getParameter("transporter", "netty"));
if(extName == null) throw new IllegalStateException("Failed to get extension (org.apache.dubbo.remoting.Transporter) name from url (" + url.toString() + ") use keys([server, transporter])");
ScopeModel scopeModel = ScopeModelUtil.getOrDefault(url.getScopeModel(), org.apache.dubbo.remoting.Transporter.class);
org.apache.dubbo.remoting.Transporter extension = (org.apache.dubbo.remoting.Transporter)scopeModel.getExtensionLoader(org.apache.dubbo.remoting.Transporter.class).getExtension(extName);
return extension.bind(arg0, arg1);
}
}
.....................................................................
public class NettyTransporter implements Transporter {
public static final String NAME = "netty";
@Override
public RemotingServer bind(URL url, ChannelHandler handler) throws RemotingException {
return new NettyServer(url, handler);
}
@Override
public Client connect(URL url, ChannelHandler handler) throws RemotingException {
return new NettyClient(url, handler);
}
}
15.Exchange网络组件的源码细节
java
-> HeaderExchanger.bind()
-> new HeaderExchangeHandler() 网络请求处理器构建
-> new DecodeHandler()
-> Transporters.bind()
-> new HeaderExchangeServer()
public class DubboProtocol extends AbstractProtocol {
...
private final ExchangeHandler requestHandler = new ExchangeHandlerAdapter() {
...
}
private ProtocolServer createServer(URL url) {
...
//通过Exchangers门面类,将requestHandler处理器传入Exchangers.bind()方法中,创建ExchangeServer对象
server = Exchangers.bind(url, requestHandler);
...
}
...
}
public class Exchangers {
...
public static ExchangeServer bind(URL url, ExchangeHandler handler) throws RemotingException {
...
url = url.addParameterIfAbsent(Constants.CODEC_KEY, "exchange");
//先获取到一个Exchanger组件,再用这个Exchanger组件去进行bind,拿到对应的ExchangeServer
//getExchanger()会通过SPI机制,获取到HeaderExchanger
//然后将DubboProtocol的requestHandler传入bind()方法中
return getExchanger(url).bind(url, handler);
}
...
}
public class HeaderExchanger implements Exchanger {
...
@Override
public ExchangeServer bind(URL url, ExchangeHandler handler) throws RemotingException {
//Exchanger这一层的代码可以理解为是位于上层的代码,它会把一些RpcInvocation调用转为请求/响应的模型,以及进行同步转异步的处理;
//从Exchanger这层开始,便进入网络模型的范围,引入了请求的概念,并最终会通过底层的网络框架把请求发送出去;
//因此需要获取到网络框架底层的Server和Client,并将它们封装到Exchanger组件如HeaderExchangeServer/HeaderExchangeClient中;
//为什么需要不同的Transporter?
//在Exchanger这一层里其实是可以使用不同的网络技术的,比如Netty、Mina这些网络通信框架;
//由于Netty、Mina这些不同的框架,它们的用法和API都是不同的,所以在Exchanger这一层,不能把Netty、Mina的API直接提供过来;
//为了把这些不同的网络框架技术进行统一的封装,需要做一层Transporter,由Transporter来实现抽象统一的底层网络框架的使用标准;
//所以Exchanger这一层是基于Transporter这一层提供的标准模型来实现请求/响应处理;
//下面的Transporters.bind()会返回一个NettyServer
return new HeaderExchangeServer(Transporters.bind(url, new DecodeHandler(new HeaderExchangeHandler(handler))));
}
...
}
public class Transporters {
...
public static RemotingServer bind(URL url, ChannelHandler... handlers) throws RemotingException {
...
ChannelHandler handler;
if (handlers.length == 1) {
handler = handlers[0];
} else {
handler = new ChannelHandlerDispatcher(handlers);
}
return getTransporter(url).bind(url, handler);
}
...
}
16.Transporter网络通信组件的源码细节
scss
-> Transporters.bind()
-> NettyTransporter.bind()
-> new NettyServer()
public class Transporters {
...
public static RemotingServer bind(URL url, ChannelHandler... handlers) throws RemotingException {
...
ChannelHandler handler;
if (handlers.length == 1) {
handler = handlers[0];
} else {
handler = new ChannelHandlerDispatcher(handlers);
}
return getTransporter(url).bind(url, handler);
}
public static Transporter getTransporter(URL url) {
//下面使用了getAdaptiveExtension()自适应机制,针对接口动态生成代码然后创建代理类,
//代理类的方法,会根据url的参数动态提取对应的实现类的name名称,以及获取真正的需要使用的实现类
//有了真正的实现类后,就可以去调用实现类的extension实例的方法了
//比如下面会获取到一个NettyTransporter实例
return url.getOrDefaultFrameworkModel().getExtensionLoader(Transporter.class).getAdaptiveExtension();
}
...
}
// 不同的框架可以有不同的Transporter
// 每个框架对应的Transporter可以创建自己的server和client
public class NettyTransporter implements Transporter {
...
@Override
public RemotingServer bind(URL url, ChannelHandler handler) throws RemotingException {
return new NettyServer(url, handler);
}
...
}
17.NettyServer构建和打开的全流程
NettyServer构造函数中的入参handler其实就是DubboProtocol中的requestHandler。bossGroup线程数是1,workerGroup线程数是CPU核数+1,但最多不会超过32个线程。
scss
-> Transporters.bind()
-> NettyTransporter.bind()
-> new NettyServer()
-> new AbstractServer()
-> NettyServer.doOpen()
-> DefaultExecutorRepository.createExecutorIfAbsent()
-> DefaultExecutorRepository.createExecutor()
public class NettyServer extends AbstractServer {
...
//NettyServer在构建的过程中,会构建和打开真正的网络服务器
//这里是基于netty4技术去实现了网络服务器构建和打开的,一旦打开后,Netty Server就开始监听指定的端口号
//当发现有请求过来就可以去进行处理,也就是通过ProxyInvoker去调用本地实现类的目标方法
//入参handler其实就是DubboProtocol中的requestHandler
public NettyServer(URL url, ChannelHandler handler) throws RemotingException {
super(ExecutorUtil.setThreadName(url, SERVER_THREAD_POOL_NAME), ChannelHandlers.wrap(handler, url));
serverShutdownTimeoutMills = ConfigurationUtils.getServerShutdownTimeout(getUrl().getOrDefaultModuleModel());
}
protected void doOpen() throws Throwable {
//对于dubbo这种工业级的中间件而言,其关于netty的用法,可以称为最佳教科书
bootstrap = new ServerBootstrap();//创建ServerBootstrap
//EventLoop,也可以理解为网络服务器,它会监听一个本地的端口号
//外部系统针对本地服务器端口号发起连接、通信、网络事件时,监听的端口号就会不停的产生网络事件
//EventLoop网络服务器,还会不停轮询监听到的网络事件
//boss的意思是负责监听端口号是否有外部系统的连接请求,它是一个EventLoopGroup线程池
bossGroup = createBossGroup();//创建boss EventLoopGroup,线程数是1
//如果发现了网络事件,就需要进行请求处理,可以通过workerGroup里的多个线程进行并发处理
workerGroup = createWorkerGroup();//创建worker EventLoopGroup,线程数是CPU核数+1,但最多不会超过32个线程
//创建NettyServerHandler,它是一个Netty中的ChannelHandler实现,不是Dubbo Remoting层的ChannelHandler接口的实现
final NettyServerHandler nettyServerHandler = createNettyServerHandler();
//获取当前NettyServer创建的所有Channel,这里的channels集合中的Channel不是Netty中的Channel对象,而是Dubbo Remoting层的Channel对象
channels = nettyServerHandler.getChannels();
//初始化ServerBootstrap,指定boss和worker EventLoopGroup
initServerBootstrap(nettyServerHandler);
//绑定指定的地址和端口
ChannelFuture channelFuture = bootstrap.bind(getBindAddress());
//等待bind操作完成
channelFuture.syncUninterruptibly();
channel = channelFuture.channel();
}
...
}
public abstract class AbstractServer extends AbstractEndpoint implements RemotingServer {
private Set<ExecutorService> executors = new ConcurrentHashSet<>();//业务线程池
...
public AbstractServer(URL url, ChannelHandler handler) throws RemotingException {
//调用父类的构造方法
super(url, handler);
//通过使用SPI机制,从applicationModel组件中根据扩展接口ExecutorRepository去获取ExtensionLoader,然后拿到其默认实现类
executorRepository = url.getOrDefaultApplicationModel().getExtensionLoader(ExecutorRepository.class).getDefaultExtension();
//根据传入的URL初始化localAddress和bindAddress
localAddress = getUrl().toInetSocketAddress();
String bindIp = getUrl().getParameter(Constants.BIND_IP_KEY, getUrl().getHost());
int bindPort = getUrl().getParameter(Constants.BIND_PORT_KEY, getUrl().getPort());
if (url.getParameter(ANYHOST_KEY, false) || NetUtils.isInvalidLocalHost(bindIp)) {
bindIp = ANYHOST_VALUE;
}
bindAddress = new InetSocketAddress(bindIp, bindPort);
//初始化accepts等字段
this.accepts = url.getParameter(ACCEPTS_KEY, DEFAULT_ACCEPTS);
//调用doOpen()这个抽象方法,启动该Server
doOpen();
//获取该Server关联的线程池,通过DefaultExecutorRepository创建一个FixedThreadPool线程池出来
executors.add(executorRepository.createExecutorIfAbsent(url));
}
protected abstract void doOpen() throws Throwable;
...
}
public class DefaultExecutorRepository implements ExecutorRepository, ExtensionAccessorAware {
...
public synchronized ExecutorService createExecutorIfAbsent(URL url) {
Map<Integer, ExecutorService> executors = data.computeIfAbsent(getExecutorKey(url), k -> new ConcurrentHashMap<>());
//Consumer's executor is sharing globally, key=Integer.MAX_VALUE. Provider's executor is sharing by protocol.
//根据URL中的side参数值决定第一层key,根据URL中的port值确定第二层key
Integer portKey = CONSUMER_SIDE.equalsIgnoreCase(url.getParameter(SIDE_KEY)) ? Integer.MAX_VALUE : url.getPort();
if (url.getParameter(THREAD_NAME_KEY) == null) {
url = url.putAttribute(THREAD_NAME_KEY, "Dubbo-protocol-" + portKey);
}
URL finalUrl = url;
ExecutorService executor = executors.computeIfAbsent(portKey, k -> createExecutor(finalUrl));
//If executor has been shut down, create a new one
//如果缓存中相应的线程池已关闭,则同样需要调用createExecutor()方法
//创建新的线程池,并替换掉缓存中已关闭的线程持
if (executor.isShutdown() || executor.isTerminated()) {
executors.remove(portKey);
executor = createExecutor(url);
executors.put(portKey, executor);
}
return executor;
}
private ExecutorService createExecutor(URL url) {
//通过SPI机制去创建线程池,默认的线程池策略ThreadPool是FixedThreadPool
return (ExecutorService) extensionAccessor.getExtensionLoader(ThreadPool.class).getAdaptiveExtension().getExecutor(url);
}
...
}
18.NettyServerHandler的源码细节
NettyServer本身就是一个handler,因为它的父类AbstractPeer就实现过ChannelHandler接口。而且AbstractPeer作为一个ChannelHandler实现,会实现handler的received()方法。NettyServer的createNettyServerHandler()方法会将NettyServer自己作为参数传入NettyServerHandler构造函数中。
一.构建NettyServer时,会将DubboProtocol的requestHandler传入NettyServer的构造函数。
二.NettyServer的构造函数会将该requestHandler进行ChannelHandlers.wrap()后再交给其父类的构造函数。
三.父类的构造函数最终找到AbstractPeer中,将包装的requestHandler赋值给AbstractPeer的handler字段。
四.NettyServer在构造函数中会初始化NettyServerHandler,然后作为Netty服务器的ChannelHandler并启动。
五.初始化NettyServerHandler时,NettyServerHandler会在构造函数中将NettyServer赋值给它的handler字段。
六.所以后续当Netty服务器接到网络请求要处理IO事件时,便会调用NettyServerHandler的channelRead()方法。
七.NettyServerHandler的channelRead()方法便会调用其handler的received()方法,也就是NettyServer的received()方法。
八.而NettyServer的received()方法,就是AbstractPeer的received()方法,因此会调用AbstractPeer的received()方法。
九.在AbstractPeer的received()方法中,会调用其handler的received()方法。也就是经过ChannelHandlers.wrap()包装后的DubboProtocol的requestHandler的received()方法。
十.因此,最后会调用MultiMessageHandler的received()方法。
java
-> NettyServer.doOpen()
-> NettyServer.createNettyServerHandler()
-> new NettyServerHandler()
public class NettyServer extends AbstractServer {
...
public NettyServer(URL url, ChannelHandler handler) throws RemotingException {
...
super(ExecutorUtil.setThreadName(url, SERVER_THREAD_POOL_NAME), ChannelHandlers.wrap(handler, url));
...
}
protected void doOpen() throws Throwable {
...
//创建NettyServerHandler,它是一个Netty中的ChannelHandler实现,不是Dubbo Remoting层的ChannelHandler接口的实现
final NettyServerHandler nettyServerHandler = createNettyServerHandler();
//获取当前NettyServer创建的所有Channel,这里的channels集合中的Channel不是Netty中的Channel对象,而是Dubbo Remoting层的Channel对象
channels = nettyServerHandler.getChannels();
//初始化ServerBootstrap,指定boss和worker EventLoopGroup
initServerBootstrap(nettyServerHandler);
...
}
//NettyServer本身就是一个handler,它的顶级父类实现了ChannelHandler接口
//这个方法会将NettyServer自己作为参数传入NettyServerHandler之中
protected NettyServerHandler createNettyServerHandler() {
return new NettyServerHandler(getUrl(), this);
}
...
}
public abstract class AbstractPeer implements Endpoint, ChannelHandler {
private final ChannelHandler handler;
...
public void received(Channel ch, Object msg) throws RemotingException {
if (closed) {
return;
}
//下面会调用MultiMessageHandler.received()方法
handler.received(ch, msg);
}
...
}
public class NettyServerHandler extends ChannelDuplexHandler {
private final ChannelHandler handler;
...
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception {
NettyChannel channel = NettyChannel.getOrAddChannel(ctx.channel(), url, handler);
//下面会调用AbstractPeer.received()方法
handler.received(channel, msg);
}
...
}
public class DubboProtocol extends AbstractProtocol {
...
private final ExchangeHandler requestHandler = new ExchangeHandlerAdapter() {
@Override
public void received(Channel channel, Object message) throws RemotingException {
...
reply((ExchangeChannel) channel, message);
...
}
@Override
public CompletableFuture<Object> reply(ExchangeChannel channel, Object message) throws RemotingException {
...
//将客户端发过来的message转换为Invocation对象
Invocation inv = (Invocation) message;
//获取此次调用Invoker对象
Invoker<?> invoker = getInvoker(channel, inv);
inv.setServiceModel(invoker.getUrl().getServiceModel());
// switch TCCL
if (invoker.getUrl().getServiceModel() != null) {
Thread.currentThread().setContextClassLoader(invoker.getUrl().getServiceModel().getClassLoader());
}
// need to consider backward-compatibility if it's a callback
if (Boolean.TRUE.toString().equals(inv.getObjectAttachmentWithoutConvert(IS_CALLBACK_SERVICE_INVOKE))) {
String methodsStr = invoker.getUrl().getParameters().get("methods");
boolean hasMethod = false;
if (methodsStr == null || !methodsStr.contains(",")) {
hasMethod = inv.getMethodName().equals(methodsStr);
} else {
String[] methods = methodsStr.split(",");
for (String method : methods) {
if (inv.getMethodName().equals(method)) {
hasMethod = true;
break;
}
}
}
...
}
//将客户端的地址记录到RpcContext中
RpcContext.getServiceContext().setRemoteAddress(channel.getRemoteAddress());
//provider服务端会在下面执行真正的本地实现类的调用
//比如下面会调用到FilterChainBuilder.FilterChainNode.invoke()方法 --> AbstractProxyInvoker.invoke()方法
Result result = invoker.invoke(inv);
//返回结果
return result.thenApply(Function.identity());
}
};
...
Invoker<?> getInvoker(Channel channel, Invocation inv) throws RemotingException {
...
//根据服务名称获取到DubboExporter服务发布实例
DubboExporter<?> exporter = (DubboExporter<?>) exporterMap.get(serviceKey);
...
//根据服务发布实例获取目标实现类的代理ProxyInvoker
return exporter.getInvoker();
}
}
19.NettyServer如何转发请求给业务线程池
关键在于:将DubboProtocol的ExchangeHandler类型的requestHandler传入时,会进行包装,包装的过程是由ChannelHandlers.wrap()来实现的。
scss
//构造NettyServer时
-> ChannelHandlers.wrap()
-> ChannelHandlers.wrapInternal()
//处理请求时
-> MultiMessageHandler.received()
-> AllChannelHandler.received()
-> executor.execute()
public class NettyServer extends AbstractServer {
...
public NettyServer(URL url, ChannelHandler handler) throws RemotingException {
...
super(ExecutorUtil.setThreadName(url, SERVER_THREAD_POOL_NAME), ChannelHandlers.wrap(handler, url));
...
}
...
}
public class ChannelHandlers {
...
public static ChannelHandler wrap(ChannelHandler handler, URL url) {
return ChannelHandlers.getInstance().wrapInternal(handler, url);
}
protected ChannelHandler wrapInternal(ChannelHandler handler, URL url) {
return new MultiMessageHandler(new HeartbeatHandler(url.getOrDefaultFrameworkModel().getExtensionLoader(Dispatcher.class)
.getAdaptiveExtension().dispatch(handler, url)));
}
...
}
public class MultiMessageHandler extends AbstractChannelHandlerDelegate {
...
public void received(Channel channel, Object message) throws RemotingException {
if (message instanceof MultiMessage) {
MultiMessage list = (MultiMessage) message;
for (Object obj : list) {
try {
//下面会执行HeartbeatHandler.received()方法
handler.received(channel, obj);
} catch (Throwable t) {
logger.error("MultiMessageHandler received fail.", t);
try {
handler.caught(channel, t);
} catch (Throwable t1) {
logger.error("MultiMessageHandler caught fail.", t1);
}
}
}
} else {
//下面会执行HeartbeatHandler.received()方法
handler.received(channel, message);
}
}
}
public class HeartbeatHandler extends AbstractChannelHandlerDelegate {
...
public void received(Channel channel, Object message) throws RemotingException {
//记录最近的读写事件时间戳
setReadTimestamp(channel);
if (isHeartbeatRequest(message)) {
//收到心跳请求
Request req = (Request) message;
if (req.isTwoWay()) {
//返回心跳响应,注意,携带请求的ID
Response res = new Response(req.getId(), req.getVersion());
res.setEvent(HEARTBEAT_EVENT);
channel.send(res);
if (logger.isDebugEnabled()) {
int heartbeat = channel.getUrl().getParameter(Constants.HEARTBEAT_KEY, 0);
logger.debug("..."));
}
}
return;
}
if (isHeartbeatResponse(message)) {
//收到心跳响应
if (logger.isDebugEnabled()) {
logger.debug("Receive heartbeat response in thread " + Thread.currentThread().getName());
}
return;
}
//下面会执行AllChannelHandler.received()方法
handler.received(channel, message);
}
...
}
//为什么需要不同的分发策略,这与不同的情况是有关系
//如果要执行的代码并没有外部数据库的IO操作,那么可以选择DirectDispatcher
//如果不关注网络连接和断开,只关注请求和响应的处理,那么可以选择MessageOnlyDispatcher或者ExecutionDispatcher
//如果对网络连接和端口特别关注,那么可以选择ConnectionOrderedChannelHandler
public class AllChannelHandler extends WrappedChannelHandler {
...
//如果收到某consumer端一个请求
@Override
public void received(Channel channel, Object message) throws RemotingException {
//获取线程池
ExecutorService executor = getPreferredExecutorService(message);
try {
//将消息封装成ChannelEventRunnable任务,提交到线程池中执行
executor.execute(new ChannelEventRunnable(channel, handler, ChannelState.RECEIVED, message));
} catch (Throwable t) {
//如果线程池满了,请求会被拒绝,这里会根据请求配置决定是否返回一个说明性的响应
if (message instanceof Request && t instanceof RejectedExecutionException){
sendFeedback(channel, (Request) message, t);
return;
}
throw new ExecutionException(message, channel, getClass() + " error when process received event .", t);
}
}
...
}